Characterization of an Overlooked Kinematical Descriptor in the Second-Gradient Hyperelastic Theory for Thin Shells

IF 1.8 3区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Sankalp Tiwari, Eliot Fried
{"title":"Characterization of an Overlooked Kinematical Descriptor in the Second-Gradient Hyperelastic Theory for Thin Shells","authors":"Sankalp Tiwari,&nbsp;Eliot Fried","doi":"10.1007/s10659-024-10103-7","DOIUrl":null,"url":null,"abstract":"<div><p>In 1978, Murdoch presented a direct second-gradient hyperelastic theory for thin shells in which the strain-energy density associated with a deformation <span>\\(\\boldsymbol{\\eta }\\)</span> of a surface <span>\\(\\mathcal{S}\\)</span> is allowed to depend constitutively on the three kinematical descriptors <span>\\(\\boldsymbol{C}\\)</span>, <span>\\(\\boldsymbol{H}\\)</span>, and <span>\\(\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{G}\\)</span>, where <span>\\(\\boldsymbol{F}=\\text{Grad} _{\\scriptscriptstyle \\mathcal{S}} \\boldsymbol{\\eta }\\)</span>, <span>\\(\\boldsymbol{C}=\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{F}\\)</span>, <span>\\(\\boldsymbol{H}=\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{L}_{ \\scriptscriptstyle \\mathcal{S}'}\\boldsymbol{F}\\)</span> is the covariant pullback of the curvature tensor <span>\\(\\boldsymbol{L}_{\\scriptscriptstyle \\mathcal{S}'}\\)</span> of the deformed surface <span>\\(\\mathcal{S}'\\)</span>, and <span>\\(\\boldsymbol{G}=\\text{Grad} _{\\scriptscriptstyle \\mathcal{S}} \\boldsymbol{F}\\)</span>. On the other hand, in Koiter’s direct thin-shell theory, the strain-energy density depends constitutively on only <span>\\(\\boldsymbol{C}\\)</span> and <span>\\(\\boldsymbol{H}\\)</span>. Due to the popularity of Koiter’s theory, the second-order tensors <span>\\(\\boldsymbol{C}\\)</span> and <span>\\(\\boldsymbol{H}\\)</span> are well understood and have been extensively characterized. However, the third-order tensor <span>\\(\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{G}\\)</span> in Murdoch’s theory is largely overlooked in the literature. We address this gap, providing a detailed characterization of <span>\\(\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{G}\\)</span>. We show that for <span>\\(\\boldsymbol{\\eta }\\)</span> twice continuously differentiable, <span>\\(\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{G}\\)</span> depends solely on <span>\\(\\boldsymbol{C}\\)</span> and its surface gradient <span>\\(\\text{Grad} _{\\scriptscriptstyle \\mathcal{S}}\\boldsymbol{C}\\)</span> and does not depend on <span>\\(\\boldsymbol{L}_{\\scriptscriptstyle \\mathcal{S}'}\\)</span>. For the special case of a conformal deformation, we find that a suitably defined strain measure corresponding to <span>\\(\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{G}\\)</span> depends only the conformal stretch and its surface gradient. For the further specialized case of an isometric deformation, this strain measure vanishes. An orthogonal decomposition of <span>\\(\\boldsymbol{F}^{\\scriptscriptstyle \\top }\\boldsymbol{G}\\)</span> reveals that it belongs to a ten-dimensional subspace of the space of third-order tensors and embodies two independent types of non-local phenomena: one related to the spatial variations in the stretching of <span>\\(\\mathcal{S}'\\)</span> and the other to the curvature of <span>\\(\\mathcal{S}\\)</span>.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-024-10103-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-024-10103-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In 1978, Murdoch presented a direct second-gradient hyperelastic theory for thin shells in which the strain-energy density associated with a deformation \(\boldsymbol{\eta }\) of a surface \(\mathcal{S}\) is allowed to depend constitutively on the three kinematical descriptors \(\boldsymbol{C}\), \(\boldsymbol{H}\), and \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\), where \(\boldsymbol{F}=\text{Grad} _{\scriptscriptstyle \mathcal{S}} \boldsymbol{\eta }\), \(\boldsymbol{C}=\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{F}\), \(\boldsymbol{H}=\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{L}_{ \scriptscriptstyle \mathcal{S}'}\boldsymbol{F}\) is the covariant pullback of the curvature tensor \(\boldsymbol{L}_{\scriptscriptstyle \mathcal{S}'}\) of the deformed surface \(\mathcal{S}'\), and \(\boldsymbol{G}=\text{Grad} _{\scriptscriptstyle \mathcal{S}} \boldsymbol{F}\). On the other hand, in Koiter’s direct thin-shell theory, the strain-energy density depends constitutively on only \(\boldsymbol{C}\) and \(\boldsymbol{H}\). Due to the popularity of Koiter’s theory, the second-order tensors \(\boldsymbol{C}\) and \(\boldsymbol{H}\) are well understood and have been extensively characterized. However, the third-order tensor \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\) in Murdoch’s theory is largely overlooked in the literature. We address this gap, providing a detailed characterization of \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\). We show that for \(\boldsymbol{\eta }\) twice continuously differentiable, \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\) depends solely on \(\boldsymbol{C}\) and its surface gradient \(\text{Grad} _{\scriptscriptstyle \mathcal{S}}\boldsymbol{C}\) and does not depend on \(\boldsymbol{L}_{\scriptscriptstyle \mathcal{S}'}\). For the special case of a conformal deformation, we find that a suitably defined strain measure corresponding to \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\) depends only the conformal stretch and its surface gradient. For the further specialized case of an isometric deformation, this strain measure vanishes. An orthogonal decomposition of \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\) reveals that it belongs to a ten-dimensional subspace of the space of third-order tensors and embodies two independent types of non-local phenomena: one related to the spatial variations in the stretching of \(\mathcal{S}'\) and the other to the curvature of \(\mathcal{S}\).

薄壳第二梯度超弹性理论中被忽视的运动学描述符的特征描述
1978年,默多克提出了薄壳的直接第二梯度超弹性理论,在这个理论中,与表面变形相关的应变能密度被允许构成性地依赖于三个运动学描述符(C)、\和(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\), 其中\(\boldsymbol{F}=\text{Grad})(Mathcal{S})\boldsymbol{eta }\),\(\boldsymbol{C}=\boldsymbol{F}^{scriptscriptstyle \top }\boldsymbol{F}\)、\(\boldsymbol{H}=\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{L}_{ \scriptscriptstyle \mathcal{S}'}\boldsymbol{F}\) 是是变形曲面 \(\mathcal{S}'}) 的曲率张量 \(\boldsymbol{L}_{\scriptscriptstyle \mathcal{S}'}\) 的协变回拉、和 \(\boldsymbol{G}=\text{Grad}(\mathcal{S}'\)和(\boldsymbol{G}=\text{Grad})。\F})。另一方面,在Koiter的直接薄壳理论中,应变能量密度只与\(\boldsymbol{C}\)和\(\boldsymbol{H}\)构成性地相关。由于 Koiter 理论的普及,人们对二阶张量 (\(\boldsymbol{C}\)和 (\(\boldsymbol{H}\)有了很好的理解,并对其进行了广泛的描述。然而,默多克理论中的三阶张量((\boldsymbol{F}^{scriptscriptstyle \top }\boldsymbol{G}\) 在很大程度上被文献所忽视。我们针对这一空白,对 \(\boldsymbol{F}^{scriptscriptstyle \top }\boldsymbol{G}\) 进行了详细的描述。我们证明,对于 \(\boldsymbol{\eta }\) 两次连续可微、\(\boldsymbol{F}^{\scriptscriptstyle\top}\boldsymbol{G}\)只取决于(\boldsymbol{C})和它的表面梯度\(text{Grad} _{\scriptscriptscriptstyle\mathcal{S}}\boldsymbol{C}\),而不取决于(\boldsymbol{L}_{\scriptscriptscriptstyle\mathcal{S}'}\)。对于共形变形的特殊情况,我们发现与 \(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\) 相对应的适当定义的应变度量只取决于共形拉伸及其表面梯度。对于等轴测变形这种更特殊的情况,这种应变度量会消失。对\(\boldsymbol{F}^{\scriptscriptstyle \top }\boldsymbol{G}\) 的正交分解揭示了它属于三阶张量空间的一个十维子空间,并体现了两种独立的非局部现象:一种与\(\mathcal{S}'\) 拉伸的空间变化有关,另一种与\(\mathcal{S}\) 的曲率有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Elasticity
Journal of Elasticity 工程技术-材料科学:综合
CiteScore
3.70
自引率
15.00%
发文量
74
审稿时长
>12 weeks
期刊介绍: The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信