Amir Naseem, Ioannis K. Argyros, Sania Qureshi, Muhammad Aziz ur Rehman, Amanullah Soomro, Krzysztof Gdawiec, Ridwanulahi Iyanda Abdulganiy
{"title":"Memory Based Approaches to One-Dimensional Nonlinear Models","authors":"Amir Naseem, Ioannis K. Argyros, Sania Qureshi, Muhammad Aziz ur Rehman, Amanullah Soomro, Krzysztof Gdawiec, Ridwanulahi Iyanda Abdulganiy","doi":"10.1007/s10440-024-00703-9","DOIUrl":null,"url":null,"abstract":"<div><p>Algorithms that locate roots are used to analyze nonlinear equations in computer science, mathematics, and physical sciences. In order to speed up convergence and increase computational efficiency, memory-based root-seeking algorithms may look for the previous iterations. Three memory-based methods with a convergence order of about 2.4142 and one method without memory with third-order convergence are devised using both Taylor’s expansion and the backward difference operator. We provide an extensive analysis of local and semilocal convergence. We also use polynomiography to analyze the methods visually. Finally, the proposed iterative approaches outperform a number of existing memory-based methods when applied to one-dimensional nonlinear models taken from different fields of science and engineering.</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"195 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00703-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Algorithms that locate roots are used to analyze nonlinear equations in computer science, mathematics, and physical sciences. In order to speed up convergence and increase computational efficiency, memory-based root-seeking algorithms may look for the previous iterations. Three memory-based methods with a convergence order of about 2.4142 and one method without memory with third-order convergence are devised using both Taylor’s expansion and the backward difference operator. We provide an extensive analysis of local and semilocal convergence. We also use polynomiography to analyze the methods visually. Finally, the proposed iterative approaches outperform a number of existing memory-based methods when applied to one-dimensional nonlinear models taken from different fields of science and engineering.
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.