Assessment of spatial variability and temporal stability of groundwater redox conditions in New Zealand

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Stephen B. Collins, Ranvir Singh, Stuart R. Mead, David J. Horne, Jon K. F. Roygard
{"title":"Assessment of spatial variability and temporal stability of groundwater redox conditions in New Zealand","authors":"Stephen B. Collins,&nbsp;Ranvir Singh,&nbsp;Stuart R. Mead,&nbsp;David J. Horne,&nbsp;Jon K. F. Roygard","doi":"10.1007/s10661-024-13427-y","DOIUrl":null,"url":null,"abstract":"<div><p>Mitigating the impacts of agricultural nutrients (nitrogen and phosphorus) on water quality requires a clear understanding of their transport pathways and transformation processes from land to receiving waters. For nitrate, which is subject to subsurface denitrification, it is therefore important to assess the spatial variability and temporal stability of groundwater redox conditions, as nitrate reduction typically occurs in reducing conditions. This paper presents a robust assessment of a large groundwater quality data set collected across New Zealand landscapes, develops methods to impute missing groundwater redox-sensitive variables and characterises the spatial variability and temporal stability of groundwater redox conditions against relevant landscape hydrogeochemical characteristics. Random forest and extreme gradient boosting (XGBoost) outperformed linear regression in predicting missing Mn<sup>2+</sup> values, achieving higher accuracy (<i>R</i><sup>2</sup> &gt; 0.8) and lower error (<i>RMSE</i> &lt; 0.2 mg/L). Analysis of groundwater redox conditions highlights considerable spatial variability, particularly influenced by subsurface geology (rock types) and soil characteristics such as soil carbon and drainage across various hydrogeological settings. Our findings also reveal a higher prevalence of oxidised redox status in shallower groundwater and greater temporal stability in oxidised conditions across New Zealand landscapes. These insights have significant implications for targeted management strategies to reduce nitrate losses from farming activities, particularly in oxidised, shallow groundwater across different hydrogeological land units.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-024-13427-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Mitigating the impacts of agricultural nutrients (nitrogen and phosphorus) on water quality requires a clear understanding of their transport pathways and transformation processes from land to receiving waters. For nitrate, which is subject to subsurface denitrification, it is therefore important to assess the spatial variability and temporal stability of groundwater redox conditions, as nitrate reduction typically occurs in reducing conditions. This paper presents a robust assessment of a large groundwater quality data set collected across New Zealand landscapes, develops methods to impute missing groundwater redox-sensitive variables and characterises the spatial variability and temporal stability of groundwater redox conditions against relevant landscape hydrogeochemical characteristics. Random forest and extreme gradient boosting (XGBoost) outperformed linear regression in predicting missing Mn2+ values, achieving higher accuracy (R2 > 0.8) and lower error (RMSE < 0.2 mg/L). Analysis of groundwater redox conditions highlights considerable spatial variability, particularly influenced by subsurface geology (rock types) and soil characteristics such as soil carbon and drainage across various hydrogeological settings. Our findings also reveal a higher prevalence of oxidised redox status in shallower groundwater and greater temporal stability in oxidised conditions across New Zealand landscapes. These insights have significant implications for targeted management strategies to reduce nitrate losses from farming activities, particularly in oxidised, shallow groundwater across different hydrogeological land units.

Abstract Image

新西兰地下水氧化还原条件的空间变异性和时间稳定性评估
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信