{"title":"HCM-Echo-VAR-Ensemble: Deep Ensemble Fusion to Detect Hypertrophic Cardiomyopathy in Echocardiograms","authors":"Abdulsalam Almadani;Atifa Sarwar;Emmanuel Agu;Monica Ahluwalia;Jacques Kpodonu","doi":"10.1109/OJEMB.2024.3486541","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n To detect Hypertrophic Cardiomyopathy (HCM) from multiple views of Echocardiogram (cardiac ultrasound) videos. \n<italic>Methods:</i>\n we propose \n<italic>HCM-Echo-VAR-Ensemble</i>\n, a novel framework that performs binary classification (HCM vs. no HCM) of echocardiogram videos directly using an ensemble of state-of-the-art deep VAR architectures models (SlowFast and I3D), and fuses their predictions using majority averaging ensembling. \n<italic>Results:</i>\n \n<italic>HCM-Echo-VAR-Ensemble</i>\n achieved state-of-the-art accuracy of 95.28%, an F1-Score of 95.20%, a specificity of 96.20%, a sensitivity of 93.97%, a PPV of 96.46%, an NPV of 94.17%, and an AUC of 98.42%, outperforming a comprehensive set of baselines including other ensembling approaches. \n<italic>Conclusions:</i>\n Our proposed HCM-Echo-VAR-Ensemble framework demonstrates significant potential for improving the sensitivity and accuracy of HCM detection in clinical settings, particularly by ensembling the complementary strengths of the SlowFast and I3D deep VAR models. This approach can enhance diagnostic consistency and accuracy, enabling reliable HCM diagnoses even in low-resource environments.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"193-201"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735780","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10735780/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Goal:
To detect Hypertrophic Cardiomyopathy (HCM) from multiple views of Echocardiogram (cardiac ultrasound) videos.
Methods:
we propose
HCM-Echo-VAR-Ensemble
, a novel framework that performs binary classification (HCM vs. no HCM) of echocardiogram videos directly using an ensemble of state-of-the-art deep VAR architectures models (SlowFast and I3D), and fuses their predictions using majority averaging ensembling.
Results:
HCM-Echo-VAR-Ensemble
achieved state-of-the-art accuracy of 95.28%, an F1-Score of 95.20%, a specificity of 96.20%, a sensitivity of 93.97%, a PPV of 96.46%, an NPV of 94.17%, and an AUC of 98.42%, outperforming a comprehensive set of baselines including other ensembling approaches.
Conclusions:
Our proposed HCM-Echo-VAR-Ensemble framework demonstrates significant potential for improving the sensitivity and accuracy of HCM detection in clinical settings, particularly by ensembling the complementary strengths of the SlowFast and I3D deep VAR models. This approach can enhance diagnostic consistency and accuracy, enabling reliable HCM diagnoses even in low-resource environments.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.