HCM-Echo-VAR-Ensemble: Deep Ensemble Fusion to Detect Hypertrophic Cardiomyopathy in Echocardiograms

IF 2.7 Q3 ENGINEERING, BIOMEDICAL
Abdulsalam Almadani;Atifa Sarwar;Emmanuel Agu;Monica Ahluwalia;Jacques Kpodonu
{"title":"HCM-Echo-VAR-Ensemble: Deep Ensemble Fusion to Detect Hypertrophic Cardiomyopathy in Echocardiograms","authors":"Abdulsalam Almadani;Atifa Sarwar;Emmanuel Agu;Monica Ahluwalia;Jacques Kpodonu","doi":"10.1109/OJEMB.2024.3486541","DOIUrl":null,"url":null,"abstract":"<italic>Goal:</i>\n To detect Hypertrophic Cardiomyopathy (HCM) from multiple views of Echocardiogram (cardiac ultrasound) videos. \n<italic>Methods:</i>\n we propose \n<italic>HCM-Echo-VAR-Ensemble</i>\n, a novel framework that performs binary classification (HCM vs. no HCM) of echocardiogram videos directly using an ensemble of state-of-the-art deep VAR architectures models (SlowFast and I3D), and fuses their predictions using majority averaging ensembling. \n<italic>Results:</i>\n \n<italic>HCM-Echo-VAR-Ensemble</i>\n achieved state-of-the-art accuracy of 95.28%, an F1-Score of 95.20%, a specificity of 96.20%, a sensitivity of 93.97%, a PPV of 96.46%, an NPV of 94.17%, and an AUC of 98.42%, outperforming a comprehensive set of baselines including other ensembling approaches. \n<italic>Conclusions:</i>\n Our proposed HCM-Echo-VAR-Ensemble framework demonstrates significant potential for improving the sensitivity and accuracy of HCM detection in clinical settings, particularly by ensembling the complementary strengths of the SlowFast and I3D deep VAR models. This approach can enhance diagnostic consistency and accuracy, enabling reliable HCM diagnoses even in low-resource environments.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"193-201"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10735780","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10735780/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Goal: To detect Hypertrophic Cardiomyopathy (HCM) from multiple views of Echocardiogram (cardiac ultrasound) videos. Methods: we propose HCM-Echo-VAR-Ensemble , a novel framework that performs binary classification (HCM vs. no HCM) of echocardiogram videos directly using an ensemble of state-of-the-art deep VAR architectures models (SlowFast and I3D), and fuses their predictions using majority averaging ensembling. Results: HCM-Echo-VAR-Ensemble achieved state-of-the-art accuracy of 95.28%, an F1-Score of 95.20%, a specificity of 96.20%, a sensitivity of 93.97%, a PPV of 96.46%, an NPV of 94.17%, and an AUC of 98.42%, outperforming a comprehensive set of baselines including other ensembling approaches. Conclusions: Our proposed HCM-Echo-VAR-Ensemble framework demonstrates significant potential for improving the sensitivity and accuracy of HCM detection in clinical settings, particularly by ensembling the complementary strengths of the SlowFast and I3D deep VAR models. This approach can enhance diagnostic consistency and accuracy, enabling reliable HCM diagnoses even in low-resource environments.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
3.40%
发文量
20
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信