Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed Bandits

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Abdalaziz Sawwan;Jie Wu
{"title":"Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed Bandits","authors":"Abdalaziz Sawwan;Jie Wu","doi":"10.26599/TST.2024.9010053","DOIUrl":null,"url":null,"abstract":"Mobile Crowdsensing (MCS) represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants. This paradigm enables scales of data collection critical for applications ranging from environmental monitoring to urban planning. However, the effective harnessing of this distributed data collection capability faces significant challenges. One of the most significant challenges is the variability in the sensing qualities of the participating devices while they are initially unknown and must be learned over time to optimize task assignments. This paper tackles the dual challenges of managing task diversity to mitigate data redundancy and optimizing task assignment amidst the inherent variability of worker performance. We introduce a novel model that dynamically adjusts task weights based on assignment frequency to promote diversity and incorporates a flexible approach to account for the different qualities of task completion, especially in scenarios with overlapping task assignments. Our strategy aims to maximize the overall weighted quality of data collected within the constraints of a predefined budget. Our strategy leverages a combinatorial multi-armed bandit framework with an upper confidence bound approach to guide decision-making. We demonstrate the efficacy of our approach through a combination of regret analysis and simulations grounded in realistic scenarios.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"732-747"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786946","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786946/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Mobile Crowdsensing (MCS) represents a transformative approach to collecting data from the environment as it utilizes the ubiquity and sensory capabilities of mobile devices with human participants. This paradigm enables scales of data collection critical for applications ranging from environmental monitoring to urban planning. However, the effective harnessing of this distributed data collection capability faces significant challenges. One of the most significant challenges is the variability in the sensing qualities of the participating devices while they are initially unknown and must be learned over time to optimize task assignments. This paper tackles the dual challenges of managing task diversity to mitigate data redundancy and optimizing task assignment amidst the inherent variability of worker performance. We introduce a novel model that dynamically adjusts task weights based on assignment frequency to promote diversity and incorporates a flexible approach to account for the different qualities of task completion, especially in scenarios with overlapping task assignments. Our strategy aims to maximize the overall weighted quality of data collected within the constraints of a predefined budget. Our strategy leverages a combinatorial multi-armed bandit framework with an upper confidence bound approach to guide decision-making. We demonstrate the efficacy of our approach through a combination of regret analysis and simulations grounded in realistic scenarios.
通过组合多臂强盗在人群感应中进行基于多样性的招募
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信