Attention-Enhanced and Knowledge-Fused Dual Item Representations Network for Recommendation

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Qiang Hua;Jiachao Zhou;Feng Zhang;Chunru Dong;Dachuan Xu
{"title":"Attention-Enhanced and Knowledge-Fused Dual Item Representations Network for Recommendation","authors":"Qiang Hua;Jiachao Zhou;Feng Zhang;Chunru Dong;Dachuan Xu","doi":"10.26599/TST.2023.9010143","DOIUrl":null,"url":null,"abstract":"Integrating Knowledge Graphs (KGs) into recommendation systems as supplementary information has become a prevalent strategy. By leveraging the semantic relationships between entities in KGs, recommendation systems can better comprehend user preferences. Due to the unique structure of KGs, methods based on Graph Neural Networks (GNNs) have emerged as the current technical trend. However, existing GNN-based methods struggle to (1) filter out noisy information in real-world KGs, and (2) differentiate the item representations obtained from the knowledge graph and bipartite graph. In this paper, we introduce a novel model called Attention-enhanced and Knowledge-fused Dual item representations Network for recommendation (namely AKDN) that employs attention and gated mechanisms to guide aggregation on both knowledge graphs and bipartite graphs. In particular, we firstly design an attention mechanism to determine the weight of each edge in the information aggregation on KGs, which reduces the influence of noisy information on the items and enables us to obtain more accurate and robust representations of the items. Furthermore, we exploit a gated aggregation mechanism to differentiate collaborative signals and knowledge information, and leverage dual item representations to fuse them together for better capturing user behavior patterns. We conduct extensive experiments on two public datasets which demonstrate the superior performance of our AKDN over state-of-the-art methods, like Knowledge Graph Attention Network (KGAT) and Knowledge Graph- based Intent Network (KGIN).","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"585-599"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786928","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786928/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Integrating Knowledge Graphs (KGs) into recommendation systems as supplementary information has become a prevalent strategy. By leveraging the semantic relationships between entities in KGs, recommendation systems can better comprehend user preferences. Due to the unique structure of KGs, methods based on Graph Neural Networks (GNNs) have emerged as the current technical trend. However, existing GNN-based methods struggle to (1) filter out noisy information in real-world KGs, and (2) differentiate the item representations obtained from the knowledge graph and bipartite graph. In this paper, we introduce a novel model called Attention-enhanced and Knowledge-fused Dual item representations Network for recommendation (namely AKDN) that employs attention and gated mechanisms to guide aggregation on both knowledge graphs and bipartite graphs. In particular, we firstly design an attention mechanism to determine the weight of each edge in the information aggregation on KGs, which reduces the influence of noisy information on the items and enables us to obtain more accurate and robust representations of the items. Furthermore, we exploit a gated aggregation mechanism to differentiate collaborative signals and knowledge information, and leverage dual item representations to fuse them together for better capturing user behavior patterns. We conduct extensive experiments on two public datasets which demonstrate the superior performance of our AKDN over state-of-the-art methods, like Knowledge Graph Attention Network (KGAT) and Knowledge Graph- based Intent Network (KGIN).
基于注意增强和知识融合的双项目推荐表示网络
将知识图(Knowledge Graphs, KGs)作为补充信息集成到推荐系统中已经成为一种流行的策略。通过利用知识库中实体之间的语义关系,推荐系统可以更好地理解用户偏好。由于KGs的独特结构,基于图神经网络(GNNs)的方法已成为当前的技术趋势。然而,现有的基于gnn的方法难以(1)过滤掉现实世界KGs中的噪声信息,以及(2)区分从知识图和二部图获得的项目表示。在本文中,我们引入了一种新的推荐模型,称为注意增强和知识融合的双项目表示网络(即AKDN),它采用注意和门控机制来引导知识图和二部图的聚合。特别是,我们首先设计了一种注意机制来确定每条边在KGs信息聚合中的权重,减少了噪声信息对项目的影响,使我们能够获得更准确和鲁棒的项目表征。此外,我们利用门控聚合机制来区分协作信号和知识信息,并利用双项目表示将它们融合在一起,以更好地捕获用户行为模式。我们在两个公共数据集上进行了广泛的实验,证明了我们的AKDN优于最先进的方法,如知识图注意力网络(KGAT)和基于知识图的意图网络(KGIN)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信