Changyan Di;Tianyi Wang;Qingguo Zhou;Jinqiang Wang
{"title":"Key Mechanisms on Resource Optimization Allocation in Minority Game Based on Reinforcement Learning","authors":"Changyan Di;Tianyi Wang;Qingguo Zhou;Jinqiang Wang","doi":"10.26599/TST.2023.9010155","DOIUrl":null,"url":null,"abstract":"The emergence of coordinated and consistent macro behavior among self-interested individuals competing for limited resources represents a central inquiry in comprehending market mechanisms and collective behavior. Traditional economics tackles this challenge through a mathematical and theoretical lens, assuming individuals are entirely rational and markets tend to stabilize through the price mechanism. Our paper addresses this issue from an econophysics standpoint, employing reinforcement learning to construct a multi-agent system modeled on minority games. Our study has undertaken a comparative analysis from both collective and individual perspectives, affirming the pivotal roles of reward feedback and individual memory in addressing the aforementioned challenge. Reward feedback serves as the guiding force for the evolution of collective behavior, propelling it towards an overall increase in rewards. Individuals, drawing insights from their own rewards through accumulated learning, gain information about the collective state and adjust their behavior accordingly. Furthermore, we apply information theory to present a formalized equation for the evolution of collective behavior. Our research supplements existing conclusions regarding the mechanisms of a free market and, at a micro level, unveils the dynamic evolution of individual behavior in synchronization with the collective.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"30 2","pages":"721-731"},"PeriodicalIF":6.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10786935","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10786935/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of coordinated and consistent macro behavior among self-interested individuals competing for limited resources represents a central inquiry in comprehending market mechanisms and collective behavior. Traditional economics tackles this challenge through a mathematical and theoretical lens, assuming individuals are entirely rational and markets tend to stabilize through the price mechanism. Our paper addresses this issue from an econophysics standpoint, employing reinforcement learning to construct a multi-agent system modeled on minority games. Our study has undertaken a comparative analysis from both collective and individual perspectives, affirming the pivotal roles of reward feedback and individual memory in addressing the aforementioned challenge. Reward feedback serves as the guiding force for the evolution of collective behavior, propelling it towards an overall increase in rewards. Individuals, drawing insights from their own rewards through accumulated learning, gain information about the collective state and adjust their behavior accordingly. Furthermore, we apply information theory to present a formalized equation for the evolution of collective behavior. Our research supplements existing conclusions regarding the mechanisms of a free market and, at a micro level, unveils the dynamic evolution of individual behavior in synchronization with the collective.
期刊介绍:
Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.