Xiaodong Liu, Kai Huang, Jindi Zhou, Xiaojian Han, Erqin Dong, Li Zhang, Licheng Guo
{"title":"Temperature effects on fatigue properties of plain-woven composites by an acoustic-optical-thermal multi-information fusion method","authors":"Xiaodong Liu, Kai Huang, Jindi Zhou, Xiaojian Han, Erqin Dong, Li Zhang, Licheng Guo","doi":"10.1016/j.ijfatigue.2024.108757","DOIUrl":null,"url":null,"abstract":"To investigate the temperature effect on the fatigue performance of plain-woven composites, a multi-information fusion method for damage identification under high-temperature conditions was established by integrating acoustic emission (AE), digital image correlation (DIC), infrared thermography (IRT) and scanning electron microscopy (SEM). Equipment for high-temperature AE and DIC acquisition was developed, and fatigue experiments were conducted at room temperature (25 °C), 100 °C, and 150 °C with <ce:italic>in-situ</ce:italic> observation. The AE data were classified into three clusters using the k-means++ method, corresponding to three damage modes with specific peak frequency ranges: matrix cracking (0 ∼ 200 kHz), fiber/matrix debonding (200 ∼ 400 kHz), and fiber breakage (400 ∼ 700 kHz), respectively. The AE results were cross-validated by analyzing surface temperature and strain fields during the fatigue process. The study revealed that higher temperatures accelerate damage accumulation during fatigue, relieve stress concentration and alter the damage proportion, but have little effect on the influence of fatigue stress levels.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"30 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2024.108757","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To investigate the temperature effect on the fatigue performance of plain-woven composites, a multi-information fusion method for damage identification under high-temperature conditions was established by integrating acoustic emission (AE), digital image correlation (DIC), infrared thermography (IRT) and scanning electron microscopy (SEM). Equipment for high-temperature AE and DIC acquisition was developed, and fatigue experiments were conducted at room temperature (25 °C), 100 °C, and 150 °C with in-situ observation. The AE data were classified into three clusters using the k-means++ method, corresponding to three damage modes with specific peak frequency ranges: matrix cracking (0 ∼ 200 kHz), fiber/matrix debonding (200 ∼ 400 kHz), and fiber breakage (400 ∼ 700 kHz), respectively. The AE results were cross-validated by analyzing surface temperature and strain fields during the fatigue process. The study revealed that higher temperatures accelerate damage accumulation during fatigue, relieve stress concentration and alter the damage proportion, but have little effect on the influence of fatigue stress levels.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.