Denis Valle, Rodrigo Leite, Rafael Izbicki, Carlos Silva, Leo Haneda
{"title":"Local uncertainty maps for land-use/land-cover classification without remote sensing and modeling work using a class-conditional conformal approach","authors":"Denis Valle, Rodrigo Leite, Rafael Izbicki, Carlos Silva, Leo Haneda","doi":"10.1016/j.jag.2024.104288","DOIUrl":null,"url":null,"abstract":"Land use/land cover (LULC) is one of the most impactful global change phenomenon. As a result, considerable effort has been devoted to creating large-scale LULC products from remote sensing data, enabling the scientific community to use these products for a wide range of downstream applications. Unfortunately, uncertainty associated with these products is seldom quantified because most approaches are too computationally intensive. Furthermore, uncertainty maps developed for large regions might fail to perform adequately at the spatial scale in which they will be used and might need to be customized to suit the specific applications of end-users.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"41 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104288","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Land use/land cover (LULC) is one of the most impactful global change phenomenon. As a result, considerable effort has been devoted to creating large-scale LULC products from remote sensing data, enabling the scientific community to use these products for a wide range of downstream applications. Unfortunately, uncertainty associated with these products is seldom quantified because most approaches are too computationally intensive. Furthermore, uncertainty maps developed for large regions might fail to perform adequately at the spatial scale in which they will be used and might need to be customized to suit the specific applications of end-users.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.