Binquan Li, Lishuang Gong, Qiao Wang, Xin Guo, Zhiqiang Li
{"title":"Spatial-Topological-Semantic alignment for cross domain scene classification of remote sensing images with few source labels","authors":"Binquan Li, Lishuang Gong, Qiao Wang, Xin Guo, Zhiqiang Li","doi":"10.1016/j.jag.2024.104313","DOIUrl":null,"url":null,"abstract":"Domain adaptation is crucial for information integration of remote sensing systems, such as satellite constellations and space stations, to intelligently achieving full domain awareness. The conventional methods focus on aligning spatial features without fully considering the topological structure and semantic information in the scene, resulting in loss of useful information and suboptimal classification results. This situation becomes more severe and further complicated to deal with under the condition of few labels available in the source domain. To address the above problems, a spatial-topological-semantic alignment method called STSA is proposed to implement unsupervised domain adaptation (UDA) with few source labels, fully exploring multiple types of information and their complementarity in remote sensing images (RSIs). The proposed method is applied to complete the classification task on a multi-modal cross-domain datasets with synthetic aperture radar (SAR), thermal infrared (TI), near infrared (NI), and short wavelength infrared (SW) images derived from Chinese Tiangong-2 manned spacecraft, as well as a Single modal cross-domain datasets with optical images. Compared with the state of the art UDA methods, even with only one labeled RSI in the source domain, the proposed methods still perform better and achieve satisfying accuracy. It properly explores valuable knowledge from unlabeled RSIs and improves the robustness and flexibility of the model, which is more suitable for UDA with few source labels in RSIs scene classification.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"21 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104313","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Domain adaptation is crucial for information integration of remote sensing systems, such as satellite constellations and space stations, to intelligently achieving full domain awareness. The conventional methods focus on aligning spatial features without fully considering the topological structure and semantic information in the scene, resulting in loss of useful information and suboptimal classification results. This situation becomes more severe and further complicated to deal with under the condition of few labels available in the source domain. To address the above problems, a spatial-topological-semantic alignment method called STSA is proposed to implement unsupervised domain adaptation (UDA) with few source labels, fully exploring multiple types of information and their complementarity in remote sensing images (RSIs). The proposed method is applied to complete the classification task on a multi-modal cross-domain datasets with synthetic aperture radar (SAR), thermal infrared (TI), near infrared (NI), and short wavelength infrared (SW) images derived from Chinese Tiangong-2 manned spacecraft, as well as a Single modal cross-domain datasets with optical images. Compared with the state of the art UDA methods, even with only one labeled RSI in the source domain, the proposed methods still perform better and achieve satisfying accuracy. It properly explores valuable knowledge from unlabeled RSIs and improves the robustness and flexibility of the model, which is more suitable for UDA with few source labels in RSIs scene classification.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.