SpatioTemporal Random Forest and SpatioTemporal Stacking Tree: A novel spatially explicit ensemble learning approach to modeling non-linearity in spatiotemporal non-stationarity
{"title":"SpatioTemporal Random Forest and SpatioTemporal Stacking Tree: A novel spatially explicit ensemble learning approach to modeling non-linearity in spatiotemporal non-stationarity","authors":"Yun Luo, Shiliang Su","doi":"10.1016/j.jag.2024.104315","DOIUrl":null,"url":null,"abstract":"A wide variety of spatially explicit modeling algorithms has recently mushroomed in geoinformation research. These algorithms establish local models with data from spatially confined subsets, thereby offering a new impetus for addressing the issue of spatiotemporal non-stationarity. However, a significant challenge persists in literature that local models are primarily predicated on linear assumptions, limiting their capacity to capture the non-linear relationships prevalent in real-world geographical phenomena. This study remedies this gap through proposing a novel approach that integrates the bagging and stacking approaches of ensemble learning into the spatially explicit modeling framework. We specifically develop the SpatioTemporal Random Forest (STRF) and SpatioTemporal Stacking Tree (STST) algorithms<ce:cross-ref ref><ce:sup loc=\"post\">1</ce:sup></ce:cross-ref><ce:footnote><ce:label>1</ce:label><ce:note-para view=\"all\">Python package link: <ce:inter-ref xlink:href=\"https://github.com/46319943/GeoRegression\" xlink:type=\"simple\">https://github.com/46319943/GeoRegression</ce:inter-ref>.</ce:note-para></ce:footnote>, which capture and interpret the non-linearity in the spatial and temporal context more effectively. Additionally, we introduce the ‘local importance score’ and ‘spatiotemporally accumulated local effects’ as novel interpretable metrics for visualizing and unraveling the dynamics of non-stationarity in spatial analyses. Simulation and real data experiments validate that the STRF and STST outperform over traditional spatially explicit modeling algorithms to a large content. This study contributes to the methodological innovation of spatially explicit modeling by bringing the nonlinearity in spatiotemporal non-stationarity to the fore.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"26 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104315","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
A wide variety of spatially explicit modeling algorithms has recently mushroomed in geoinformation research. These algorithms establish local models with data from spatially confined subsets, thereby offering a new impetus for addressing the issue of spatiotemporal non-stationarity. However, a significant challenge persists in literature that local models are primarily predicated on linear assumptions, limiting their capacity to capture the non-linear relationships prevalent in real-world geographical phenomena. This study remedies this gap through proposing a novel approach that integrates the bagging and stacking approaches of ensemble learning into the spatially explicit modeling framework. We specifically develop the SpatioTemporal Random Forest (STRF) and SpatioTemporal Stacking Tree (STST) algorithms11Python package link: https://github.com/46319943/GeoRegression., which capture and interpret the non-linearity in the spatial and temporal context more effectively. Additionally, we introduce the ‘local importance score’ and ‘spatiotemporally accumulated local effects’ as novel interpretable metrics for visualizing and unraveling the dynamics of non-stationarity in spatial analyses. Simulation and real data experiments validate that the STRF and STST outperform over traditional spatially explicit modeling algorithms to a large content. This study contributes to the methodological innovation of spatially explicit modeling by bringing the nonlinearity in spatiotemporal non-stationarity to the fore.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.