{"title":"The stability for CACC system with time delays and reconstitution information of vehicles for compensating delays based on Bi-LSTM","authors":"Chenmin Zhang, Yonggui Liu, Zeming Li","doi":"10.1016/j.vehcom.2024.100868","DOIUrl":null,"url":null,"abstract":"The vehicle platoon using the cooperative adaptive cruise control (CACC) transmits information between vehicles via communication networks to increase the control performance. However, time delays are inevitable during the network transmission of information, which influence the stability of the CACC vehicle system. This paper proposes a method for compensating information affected by time delays based on a Bi-LSTM model. First, the third-order dynamics of the CACC vehicle systems are established, and the control strategies are proposed with the leading, preceding and following vehicles. The conditions of local stability and string stability for the CACC vehicle systems without time delays are derived based on the Routh-Hurwitz stability criterion and the frequency domain methods, which reveal the relationship between the model parameters and the controller parameters. For the CACC vehicle systems with time delays, the maximum time delays that ensure the local stability and string stability are achieved using the similar methods accordingly. However, the stability of the CACC vehicle systems is destroyed, when the time delay exceeds the maximum value. To deal with the impact of time delays, the bidirectional long short term memory (Bi-LSTM) model is adopted to predict and reconstitute the information affected by time delays. Furthermore, the relevant parameters are set and the real vehicle data is used for calculation and simulation. The simulation results confirm the local and string stability can be ensured, and further show the boundary of the maximum time delay may reach 0.45<ce:italic>s</ce:italic> for the CACC vehicle systems in this paper. In order to highlight superiority of Bi-LSTM, by comparing LSTM and KF with BiLSTM, the simulation results show Bi-LSTM has the highest correlation coefficient and the smallest root mean square error, which verify that Bi-LSTM reconstructing information affected by time delays is more effective than KF and LSTM.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"22 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2024.100868","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The vehicle platoon using the cooperative adaptive cruise control (CACC) transmits information between vehicles via communication networks to increase the control performance. However, time delays are inevitable during the network transmission of information, which influence the stability of the CACC vehicle system. This paper proposes a method for compensating information affected by time delays based on a Bi-LSTM model. First, the third-order dynamics of the CACC vehicle systems are established, and the control strategies are proposed with the leading, preceding and following vehicles. The conditions of local stability and string stability for the CACC vehicle systems without time delays are derived based on the Routh-Hurwitz stability criterion and the frequency domain methods, which reveal the relationship between the model parameters and the controller parameters. For the CACC vehicle systems with time delays, the maximum time delays that ensure the local stability and string stability are achieved using the similar methods accordingly. However, the stability of the CACC vehicle systems is destroyed, when the time delay exceeds the maximum value. To deal with the impact of time delays, the bidirectional long short term memory (Bi-LSTM) model is adopted to predict and reconstitute the information affected by time delays. Furthermore, the relevant parameters are set and the real vehicle data is used for calculation and simulation. The simulation results confirm the local and string stability can be ensured, and further show the boundary of the maximum time delay may reach 0.45s for the CACC vehicle systems in this paper. In order to highlight superiority of Bi-LSTM, by comparing LSTM and KF with BiLSTM, the simulation results show Bi-LSTM has the highest correlation coefficient and the smallest root mean square error, which verify that Bi-LSTM reconstructing information affected by time delays is more effective than KF and LSTM.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.