Nourhan Bachir, Chamseddine Zaki, Hassan Harb, Roland Billen
{"title":"VeTraSPM: Novel vehicle trajectory data sequential pattern mining algorithm for link criticality analysis","authors":"Nourhan Bachir, Chamseddine Zaki, Hassan Harb, Roland Billen","doi":"10.1016/j.vehcom.2024.100869","DOIUrl":null,"url":null,"abstract":"This paper presents VeTraSPM (Vehicle Trajectory Data Sequential Pattern Mining), a novel algorithm designed to address the limitations of existing sequential pattern mining methods when applied to vehicle trajectory data. Current algorithms fail to capture essential characteristics such as directional flow on one-way roads (e.g., “AB” is valid but not “BA”), connectivity constraints at junctions, and the repetition of links within sequences. VeTraSPM overcomes these gaps by accurately extracting frequent patterns and confident rules while leveraging vertical projection for efficient memory and space management, enabling it to handle large datasets. Furthermore, the algorithm incorporates partitioning and parallelization techniques, further enhancing its scalability for real-world traffic environments. Three new metrics—FqMS, CMS, and SIS—are introduced to assess link criticality based on the consistent occurrence of links across movement patterns at various levels. The efficiency of VeTraSPM is demonstrated through a comparative analysis with baseline algorithms, showcasing its superior performance. The visualization of the proposed metrics offers valuable insights into link importance, supporting proactive traffic management strategies. A case study using real-world datasets from Luxembourg and Monaco validates its scalability and practical value in enhancing the resilience of urban traffic networks.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"16 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2024.100869","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents VeTraSPM (Vehicle Trajectory Data Sequential Pattern Mining), a novel algorithm designed to address the limitations of existing sequential pattern mining methods when applied to vehicle trajectory data. Current algorithms fail to capture essential characteristics such as directional flow on one-way roads (e.g., “AB” is valid but not “BA”), connectivity constraints at junctions, and the repetition of links within sequences. VeTraSPM overcomes these gaps by accurately extracting frequent patterns and confident rules while leveraging vertical projection for efficient memory and space management, enabling it to handle large datasets. Furthermore, the algorithm incorporates partitioning and parallelization techniques, further enhancing its scalability for real-world traffic environments. Three new metrics—FqMS, CMS, and SIS—are introduced to assess link criticality based on the consistent occurrence of links across movement patterns at various levels. The efficiency of VeTraSPM is demonstrated through a comparative analysis with baseline algorithms, showcasing its superior performance. The visualization of the proposed metrics offers valuable insights into link importance, supporting proactive traffic management strategies. A case study using real-world datasets from Luxembourg and Monaco validates its scalability and practical value in enhancing the resilience of urban traffic networks.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.