{"title":"Federated learning on the go: Building stable clusters and optimizing resources on the road","authors":"Sawsan AbdulRahman, Safa Otoum, Ouns Bouachir","doi":"10.1016/j.vehcom.2024.100870","DOIUrl":null,"url":null,"abstract":"With the proliferation of Internet of Things, leveraging federated learning (FL) for collaborative model training has become paramount. It has turned into a powerful tool to analyze on-device data and produce real-time applications while safeguarding user privacy. However, in vehicular networks, the dynamic nature of vehicles, coupled with resource constraints, gives rise to new challenges for efficient FL implementation. In this paper, we address the critical problems of optimizing computational and communication resources and selecting the appropriate vehicle to participate in the process. Our proposed scheme bypasses the communication bottleneck by forming homogeneous groups based on the vehicles mobility/direction and their computing resources. Vehicle-to-Vehicle communication is then adapted within each group, and communication with an on-road edge node is orchestrated by a designated Cluster Head (CH). The latter is selected based on several factors, including connectivity index, mobility coherence, and computational resources. This selection process is designed to be robust against potential cheating attempts, which prevents nodes from avoiding the role of CH to conserve their resources. Moreover, we propose a matching algorithm that pairs each vehicular group with the appropriate edge nodes responsible for aggregating local models and facilitating communication with the server, which subsequently processes the models from all edges. The conducted experiments show promising results compared to benchmarks by achieving: (1) significantly higher amounts of trained data per iteration through strategic CH selection, leading to improved model accuracy and reduced communication overhead. Additionally, our approach demonstrates (2) efficient network load management, (3) faster convergence times in later training rounds, and (4) superior cluster stability.","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.vehcom.2024.100870","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the proliferation of Internet of Things, leveraging federated learning (FL) for collaborative model training has become paramount. It has turned into a powerful tool to analyze on-device data and produce real-time applications while safeguarding user privacy. However, in vehicular networks, the dynamic nature of vehicles, coupled with resource constraints, gives rise to new challenges for efficient FL implementation. In this paper, we address the critical problems of optimizing computational and communication resources and selecting the appropriate vehicle to participate in the process. Our proposed scheme bypasses the communication bottleneck by forming homogeneous groups based on the vehicles mobility/direction and their computing resources. Vehicle-to-Vehicle communication is then adapted within each group, and communication with an on-road edge node is orchestrated by a designated Cluster Head (CH). The latter is selected based on several factors, including connectivity index, mobility coherence, and computational resources. This selection process is designed to be robust against potential cheating attempts, which prevents nodes from avoiding the role of CH to conserve their resources. Moreover, we propose a matching algorithm that pairs each vehicular group with the appropriate edge nodes responsible for aggregating local models and facilitating communication with the server, which subsequently processes the models from all edges. The conducted experiments show promising results compared to benchmarks by achieving: (1) significantly higher amounts of trained data per iteration through strategic CH selection, leading to improved model accuracy and reduced communication overhead. Additionally, our approach demonstrates (2) efficient network load management, (3) faster convergence times in later training rounds, and (4) superior cluster stability.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.