Estimating structure of understory bamboo for giant panda habitat by developing an advanced vertical vegetation classification approach using UAS-LiDAR data
Xin Shen, Lin Cao, Yisheng Ma, Nicholas C. Coops, Evan R. Muise, Guibin Wang, Fuliang Cao
{"title":"Estimating structure of understory bamboo for giant panda habitat by developing an advanced vertical vegetation classification approach using UAS-LiDAR data","authors":"Xin Shen, Lin Cao, Yisheng Ma, Nicholas C. Coops, Evan R. Muise, Guibin Wang, Fuliang Cao","doi":"10.1016/j.jag.2024.104304","DOIUrl":null,"url":null,"abstract":"Bamboo forests are natural habitat for the giant panda which is one of the most vulnerable mammal species. In structurally complex natural forests, bamboos are normally located under the canopy of taller trees, which makes them difficult to be quantified accurately. Although Light Detection and Ranging (LiDAR) technologies have been well established as the effective tool for forest structure assessment, the use of LiDAR to assess understory bamboo in structurally complex natural forests is less well known. We present a novel vertical vegetation classification (VVC) approach to map the structure of understory bamboos for giant panda forage in natural forests. An optimized demarcation point identification (DPI) model was developed for stratifying different vertical layers from coarse to fine scales. Three-dimensional understory bamboo point clouds were successfully isolated from the forest point cloud, then bamboo structure predictive models were developed through understory bamboo point cloud metrics and applied over the entire study area to generate spatially continuous maps of understory bamboo structure. Our results indicate that the isolation of the understory bamboo point cloud using the developed VVC approach performs well and has small bias, the extracted maximum height is close to field-measured maximum height (R<ce:sup loc=\"post\">2</ce:sup> = 0.77, rRMSE = 15.02 %). Height-related metrics have higher correlations with bamboo structure (mean natural and true height, basal diameter, and total aboveground biomass) than other metrics (<ce:italic>r</ce:italic> > 0.8), and understory bamboo structures are estimated with relatively high accuracy (R<ce:sup loc=\"post\">2</ce:sup> = 0.84 – 0.91, rRMSE = 10.87 – 29.41 %). We also find varying effects of topography on the spatial distribution of different understory bamboo species. This study demonstrates the benefits of utilizing LiDAR data to ascertain fine-scale understory bamboo resources, providing critical supports for giant panda habitat assessment and conservation.","PeriodicalId":50341,"journal":{"name":"International Journal of Applied Earth Observation and Geoinformation","volume":"43 1","pages":""},"PeriodicalIF":7.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Earth Observation and Geoinformation","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jag.2024.104304","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Bamboo forests are natural habitat for the giant panda which is one of the most vulnerable mammal species. In structurally complex natural forests, bamboos are normally located under the canopy of taller trees, which makes them difficult to be quantified accurately. Although Light Detection and Ranging (LiDAR) technologies have been well established as the effective tool for forest structure assessment, the use of LiDAR to assess understory bamboo in structurally complex natural forests is less well known. We present a novel vertical vegetation classification (VVC) approach to map the structure of understory bamboos for giant panda forage in natural forests. An optimized demarcation point identification (DPI) model was developed for stratifying different vertical layers from coarse to fine scales. Three-dimensional understory bamboo point clouds were successfully isolated from the forest point cloud, then bamboo structure predictive models were developed through understory bamboo point cloud metrics and applied over the entire study area to generate spatially continuous maps of understory bamboo structure. Our results indicate that the isolation of the understory bamboo point cloud using the developed VVC approach performs well and has small bias, the extracted maximum height is close to field-measured maximum height (R2 = 0.77, rRMSE = 15.02 %). Height-related metrics have higher correlations with bamboo structure (mean natural and true height, basal diameter, and total aboveground biomass) than other metrics (r > 0.8), and understory bamboo structures are estimated with relatively high accuracy (R2 = 0.84 – 0.91, rRMSE = 10.87 – 29.41 %). We also find varying effects of topography on the spatial distribution of different understory bamboo species. This study demonstrates the benefits of utilizing LiDAR data to ascertain fine-scale understory bamboo resources, providing critical supports for giant panda habitat assessment and conservation.
期刊介绍:
The International Journal of Applied Earth Observation and Geoinformation publishes original papers that utilize earth observation data for natural resource and environmental inventory and management. These data primarily originate from remote sensing platforms, including satellites and aircraft, supplemented by surface and subsurface measurements. Addressing natural resources such as forests, agricultural land, soils, and water, as well as environmental concerns like biodiversity, land degradation, and hazards, the journal explores conceptual and data-driven approaches. It covers geoinformation themes like capturing, databasing, visualization, interpretation, data quality, and spatial uncertainty.