Sebastiano Corli , Lorenzo Moro , Daniele Dragoni , Massimiliano Dispenza , Enrico Prati
{"title":"Quantum machine learning algorithms for anomaly detection: A review","authors":"Sebastiano Corli , Lorenzo Moro , Daniele Dragoni , Massimiliano Dispenza , Enrico Prati","doi":"10.1016/j.future.2024.107632","DOIUrl":null,"url":null,"abstract":"<div><div>The advent of quantum computers has justified the development of quantum machine learning algorithms, based on the adaptation of the principles of machine learning to the formalism of qubits. Among such quantum algorithms, anomaly detection represents an important problem crossing several disciplines from cybersecurity, to fraud detection to particle physics. We summarize the key concepts involved in quantum computing, introducing the formal concept of quantum speed up. The survey provides a structured map of anomaly detection based on quantum machine learning. We have grouped existing algorithms according to the different learning methods, namely quantum supervised, quantum unsupervised and quantum reinforcement learning, respectively. We provide an estimate of the hardware resources to provide sufficient computational power in the future. The survey provides a systematic and compact understanding of the techniques belonging to each category. We eventually provide a discussion on the computational complexity of the learning methods in real application domains.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107632"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X2400596X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of quantum computers has justified the development of quantum machine learning algorithms, based on the adaptation of the principles of machine learning to the formalism of qubits. Among such quantum algorithms, anomaly detection represents an important problem crossing several disciplines from cybersecurity, to fraud detection to particle physics. We summarize the key concepts involved in quantum computing, introducing the formal concept of quantum speed up. The survey provides a structured map of anomaly detection based on quantum machine learning. We have grouped existing algorithms according to the different learning methods, namely quantum supervised, quantum unsupervised and quantum reinforcement learning, respectively. We provide an estimate of the hardware resources to provide sufficient computational power in the future. The survey provides a systematic and compact understanding of the techniques belonging to each category. We eventually provide a discussion on the computational complexity of the learning methods in real application domains.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.