A comprehensive plane-wise review of DDoS attacks in SDN: Leveraging detection and mitigation through machine learning and deep learning

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Dhruv Kalambe, Divyansh Sharma, Pushkar Kadam, Shivangi Surati
{"title":"A comprehensive plane-wise review of DDoS attacks in SDN: Leveraging detection and mitigation through machine learning and deep learning","authors":"Dhruv Kalambe, Divyansh Sharma, Pushkar Kadam, Shivangi Surati","doi":"10.1016/j.jnca.2024.104081","DOIUrl":null,"url":null,"abstract":"The traditional architecture of networks in Software Defined Networking (SDN) is divided into three distinct planes to incorporate intelligence into networks. However, this structure has also introduced security threats and challenges across these planes, including the widely recognized Distributed Denial of Service (DDoS) attack. Therefore, it is essential to predict such attacks and their variants at different planes in SDN to maintain seamless network operations. Apart from network based and flow analysis based solutions to detect the attacks; machine learning and deep learning based prediction and mitigation approaches are also explored by the researchers and applied at different planes of software defined networking. Consequently, a detailed analysis of DDoS attacks and a review that explores DDoS attacks in SDN along with their learning based prediction/mitigation strategies are required to be studied and presented in detail. This paper primarily aims to investigate and analyze DDoS attacks on each plane of SDN and to study as well as compare machine learning, advanced federated learning and deep learning approaches to predict these attacks. The real world case studies are also explored to compare the analysis. In addition, low-rate DDoS attacks and novel research directions are discussed that can further be utilized by SDN experts and researchers to confront the effects by DDoS attacks on SDN.","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"252 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.jnca.2024.104081","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

The traditional architecture of networks in Software Defined Networking (SDN) is divided into three distinct planes to incorporate intelligence into networks. However, this structure has also introduced security threats and challenges across these planes, including the widely recognized Distributed Denial of Service (DDoS) attack. Therefore, it is essential to predict such attacks and their variants at different planes in SDN to maintain seamless network operations. Apart from network based and flow analysis based solutions to detect the attacks; machine learning and deep learning based prediction and mitigation approaches are also explored by the researchers and applied at different planes of software defined networking. Consequently, a detailed analysis of DDoS attacks and a review that explores DDoS attacks in SDN along with their learning based prediction/mitigation strategies are required to be studied and presented in detail. This paper primarily aims to investigate and analyze DDoS attacks on each plane of SDN and to study as well as compare machine learning, advanced federated learning and deep learning approaches to predict these attacks. The real world case studies are also explored to compare the analysis. In addition, low-rate DDoS attacks and novel research directions are discussed that can further be utilized by SDN experts and researchers to confront the effects by DDoS attacks on SDN.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Network and Computer Applications
Journal of Network and Computer Applications 工程技术-计算机:跨学科应用
CiteScore
21.50
自引率
3.40%
发文量
142
审稿时长
37 days
期刊介绍: The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信