Multi-label feature selection considering label importance-weighted relevance and label-dependency redundancy

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Xi-Ao Ma , Haibo Liu , Yi Liu , Justin Zuopeng Zhang
{"title":"Multi-label feature selection considering label importance-weighted relevance and label-dependency redundancy","authors":"Xi-Ao Ma ,&nbsp;Haibo Liu ,&nbsp;Yi Liu ,&nbsp;Justin Zuopeng Zhang","doi":"10.1016/j.ejor.2024.11.038","DOIUrl":null,"url":null,"abstract":"<div><div>Information theory has emerged as a prominent approach for analyzing feature relevance and redundancy in multi-label feature selection. However, traditional information theory-based methods encounter two primary issues. Firstly, when evaluating feature relevance, they fail to consider the differing importance of each label within the entire label set. Secondly, when assessing feature redundancy, they overlook the varying dependencies of the selected features on the labels. To address these issues, this paper proposes a novel multi-label feature selection method that considers label importance-weighted relevance and label-dependency redundancy. Specifically, we introduce the concept of label importance weight (LIW) to measure the significance of each label within the entire label set. Based on this LIW, we define a feature relevance term called label importance-weighted relevance (LIWR). Subsequently, we leverage the uncertainty coefficient to quantify the dependence of the selected features on the labels, treating it as a weight. Building upon this weight, we establish a feature redundancy term known as label-dependency redundancy (LDR). Finally, we formulate a feature evaluation criterion called LIWR-LDR by maximizing LIWR and minimizing LDR, accompanied by the presentation of a corresponding feature selection algorithm. Extensive experiments conducted on 25 multi-label datasets demonstrate the effectiveness of LIWR-LDR.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"322 1","pages":"Pages 215-236"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724009287","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Information theory has emerged as a prominent approach for analyzing feature relevance and redundancy in multi-label feature selection. However, traditional information theory-based methods encounter two primary issues. Firstly, when evaluating feature relevance, they fail to consider the differing importance of each label within the entire label set. Secondly, when assessing feature redundancy, they overlook the varying dependencies of the selected features on the labels. To address these issues, this paper proposes a novel multi-label feature selection method that considers label importance-weighted relevance and label-dependency redundancy. Specifically, we introduce the concept of label importance weight (LIW) to measure the significance of each label within the entire label set. Based on this LIW, we define a feature relevance term called label importance-weighted relevance (LIWR). Subsequently, we leverage the uncertainty coefficient to quantify the dependence of the selected features on the labels, treating it as a weight. Building upon this weight, we establish a feature redundancy term known as label-dependency redundancy (LDR). Finally, we formulate a feature evaluation criterion called LIWR-LDR by maximizing LIWR and minimizing LDR, accompanied by the presentation of a corresponding feature selection algorithm. Extensive experiments conducted on 25 multi-label datasets demonstrate the effectiveness of LIWR-LDR.
考虑标签重要性加权相关性和标签依赖冗余的多标签特征选择
信息理论已成为分析多标签特征选择中特征相关性和冗余性的重要方法。然而,传统的基于信息理论的方法遇到了两个主要问题。首先,在评估特征相关性时,他们没有考虑到整个标签集中每个标签的不同重要性。其次,在评估特征冗余时,他们忽略了所选特征对标签的不同依赖关系。为了解决这些问题,本文提出了一种考虑标签重要性加权相关性和标签依赖冗余的多标签特征选择方法。具体来说,我们引入了标签重要性权重(LIW)的概念来衡量整个标签集中每个标签的重要性。在此基础上,我们定义了一个特征相关术语,称为标签重要性加权相关性(LIWR)。随后,我们利用不确定系数来量化所选特征对标签的依赖性,将其视为权重。在此权重的基础上,我们建立了一个称为标签依赖冗余(LDR)的特征冗余术语。最后,通过最大化LIWR和最小化LDR,提出了LIWR-LDR特征评价准则,并给出了相应的特征选择算法。在25个多标签数据集上进行的大量实验证明了LIWR-LDR的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信