Multi-label feature selection considering label importance-weighted relevance and label-dependency redundancy

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Xi-Ao Ma, Haibo Liu, Yi Liu, Justin Zuopeng Zhang
{"title":"Multi-label feature selection considering label importance-weighted relevance and label-dependency redundancy","authors":"Xi-Ao Ma, Haibo Liu, Yi Liu, Justin Zuopeng Zhang","doi":"10.1016/j.ejor.2024.11.038","DOIUrl":null,"url":null,"abstract":"Information theory has emerged as a prominent approach for analyzing feature relevance and redundancy in multi-label feature selection. However, traditional information theory-based methods encounter two primary issues. Firstly, when evaluating feature relevance, they fail to consider the differing importance of each label within the entire label set. Secondly, when assessing feature redundancy, they overlook the varying dependencies of the selected features on the labels. To address these issues, this paper proposes a novel multi-label feature selection method that considers label importance-weighted relevance and label-dependency redundancy. Specifically, we introduce the concept of label importance weight (LIW) to measure the significance of each label within the entire label set. Based on this LIW, we define a feature relevance term called label importance-weighted relevance (LIWR). Subsequently, we leverage the uncertainty coefficient to quantify the dependence of the selected features on the labels, treating it as a weight. Building upon this weight, we establish a feature redundancy term known as label-dependency redundancy (LDR). Finally, we formulate a feature evaluation criterion called LIWR-LDR by maximizing LIWR and minimizing LDR, accompanied by the presentation of a corresponding feature selection algorithm. Extensive experiments conducted on 25 multi-label datasets demonstrate the effectiveness of LIWR-LDR.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"43 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.11.038","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Information theory has emerged as a prominent approach for analyzing feature relevance and redundancy in multi-label feature selection. However, traditional information theory-based methods encounter two primary issues. Firstly, when evaluating feature relevance, they fail to consider the differing importance of each label within the entire label set. Secondly, when assessing feature redundancy, they overlook the varying dependencies of the selected features on the labels. To address these issues, this paper proposes a novel multi-label feature selection method that considers label importance-weighted relevance and label-dependency redundancy. Specifically, we introduce the concept of label importance weight (LIW) to measure the significance of each label within the entire label set. Based on this LIW, we define a feature relevance term called label importance-weighted relevance (LIWR). Subsequently, we leverage the uncertainty coefficient to quantify the dependence of the selected features on the labels, treating it as a weight. Building upon this weight, we establish a feature redundancy term known as label-dependency redundancy (LDR). Finally, we formulate a feature evaluation criterion called LIWR-LDR by maximizing LIWR and minimizing LDR, accompanied by the presentation of a corresponding feature selection algorithm. Extensive experiments conducted on 25 multi-label datasets demonstrate the effectiveness of LIWR-LDR.
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信