Optimal computation budget allocation with Gaussian process regression

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Mingjie Hu, Jie Xu, Chun-Hung Chen, Jian-Qiang Hu
{"title":"Optimal computation budget allocation with Gaussian process regression","authors":"Mingjie Hu, Jie Xu, Chun-Hung Chen, Jian-Qiang Hu","doi":"10.1016/j.ejor.2024.11.049","DOIUrl":null,"url":null,"abstract":"We consider Ranking and Selection (R&S) in the presence of spatial correlation among designs. The performance of each design can only be evaluated through stochastic simulation with heterogeneous noise. Our primary objective is to maximize the probability of correct selection (PCS) by optimally allocating the simulation budget considering the spatial correlation among designs. We propose using Gaussian process regression (GPR) to model the spatial correlation and develop a GPR-based optimal computing budget allocation (GPOCBA) framework to derive an asymptotically optimal allocation policy. Additionally, we analyze the impact of spatial correlation on allocation policy and quantify its benefits under specific cases. We also introduce a sequential implementation of GPOCBA and establish convergence results. Numerical experiments show that the proposed GPOCBA method significantly outperforms the widely used OCBA, demonstrating improved computational efficiency by considering spatial correlation in R&S problems.","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"22 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1016/j.ejor.2024.11.049","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Ranking and Selection (R&S) in the presence of spatial correlation among designs. The performance of each design can only be evaluated through stochastic simulation with heterogeneous noise. Our primary objective is to maximize the probability of correct selection (PCS) by optimally allocating the simulation budget considering the spatial correlation among designs. We propose using Gaussian process regression (GPR) to model the spatial correlation and develop a GPR-based optimal computing budget allocation (GPOCBA) framework to derive an asymptotically optimal allocation policy. Additionally, we analyze the impact of spatial correlation on allocation policy and quantify its benefits under specific cases. We also introduce a sequential implementation of GPOCBA and establish convergence results. Numerical experiments show that the proposed GPOCBA method significantly outperforms the widely used OCBA, demonstrating improved computational efficiency by considering spatial correlation in R&S problems.
利用高斯过程回归优化计算预算分配
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信