Optimal computation budget allocation with Gaussian process regression

IF 6 2区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Mingjie Hu , Jie Xu , Chun-Hung Chen , Jian-Qiang Hu
{"title":"Optimal computation budget allocation with Gaussian process regression","authors":"Mingjie Hu ,&nbsp;Jie Xu ,&nbsp;Chun-Hung Chen ,&nbsp;Jian-Qiang Hu","doi":"10.1016/j.ejor.2024.11.049","DOIUrl":null,"url":null,"abstract":"<div><div>We consider Ranking and Selection (R&amp;S) in the presence of spatial correlation among designs. The performance of each design can only be evaluated through stochastic simulation with heterogeneous noise. Our primary objective is to maximize the probability of correct selection (PCS) by optimally allocating the simulation budget considering the spatial correlation among designs. We propose using Gaussian process regression (GPR) to model the spatial correlation and develop a GPR-based optimal computing budget allocation (GPOCBA) framework to derive an asymptotically optimal allocation policy. Additionally, we analyze the impact of spatial correlation on allocation policy and quantify its benefits under specific cases. We also introduce a sequential implementation of GPOCBA and establish convergence results. Numerical experiments show that the proposed GPOCBA method significantly outperforms the widely used OCBA, demonstrating improved computational efficiency by considering spatial correlation in R&amp;S problems.</div></div>","PeriodicalId":55161,"journal":{"name":"European Journal of Operational Research","volume":"322 1","pages":"Pages 147-156"},"PeriodicalIF":6.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Operational Research","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377221724009408","RegionNum":2,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We consider Ranking and Selection (R&S) in the presence of spatial correlation among designs. The performance of each design can only be evaluated through stochastic simulation with heterogeneous noise. Our primary objective is to maximize the probability of correct selection (PCS) by optimally allocating the simulation budget considering the spatial correlation among designs. We propose using Gaussian process regression (GPR) to model the spatial correlation and develop a GPR-based optimal computing budget allocation (GPOCBA) framework to derive an asymptotically optimal allocation policy. Additionally, we analyze the impact of spatial correlation on allocation policy and quantify its benefits under specific cases. We also introduce a sequential implementation of GPOCBA and establish convergence results. Numerical experiments show that the proposed GPOCBA method significantly outperforms the widely used OCBA, demonstrating improved computational efficiency by considering spatial correlation in R&S problems.
利用高斯过程回归优化计算预算分配
我们考虑排序和选择(R&;S)在设计之间的空间相关性的存在。每种设计的性能只能通过带有异质噪声的随机模拟来评估。我们的主要目标是考虑设计之间的空间相关性,通过优化分配仿真预算来最大化正确选择(PCS)的概率。本文提出利用高斯过程回归(GPR)对空间相关性进行建模,并建立基于高斯过程回归的最优计算预算分配(GPOCBA)框架来推导渐近最优分配策略。此外,我们还分析了空间相关性对分配政策的影响,并在具体案例下量化了其效益。我们还介绍了GPOCBA的顺序实现,并建立了收敛结果。数值实验表明,GPOCBA方法显著优于目前广泛使用的OCBA方法,在R&;S问题中考虑了空间相关性,提高了计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Operational Research
European Journal of Operational Research 管理科学-运筹学与管理科学
CiteScore
11.90
自引率
9.40%
发文量
786
审稿时长
8.2 months
期刊介绍: The European Journal of Operational Research (EJOR) publishes high quality, original papers that contribute to the methodology of operational research (OR) and to the practice of decision making.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信