CRISPR-StAR enables high-resolution genetic screening in complex in vivo models

IF 33.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Esther C. H. Uijttewaal, Joonsun Lee, Annika Charlotte Sell, Naomi Botay, Gintautas Vainorius, Maria Novatchkova, Juliane Baar, Jiaye Yang, Tobias Potzler, Sophie van der Leij, Christopher Lowden, Julia Sinner, Anais Elewaut, Milanka Gavrilovic, Anna Obenauf, Daniel Schramek, Ulrich Elling
{"title":"CRISPR-StAR enables high-resolution genetic screening in complex in vivo models","authors":"Esther C. H. Uijttewaal, Joonsun Lee, Annika Charlotte Sell, Naomi Botay, Gintautas Vainorius, Maria Novatchkova, Juliane Baar, Jiaye Yang, Tobias Potzler, Sophie van der Leij, Christopher Lowden, Julia Sinner, Anais Elewaut, Milanka Gavrilovic, Anna Obenauf, Daniel Schramek, Ulrich Elling","doi":"10.1038/s41587-024-02512-9","DOIUrl":null,"url":null,"abstract":"<p>Pooled genetic screening with CRISPR–Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.</p>","PeriodicalId":19084,"journal":{"name":"Nature biotechnology","volume":"63 1","pages":""},"PeriodicalIF":33.1000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41587-024-02512-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Pooled genetic screening with CRISPR–Cas9 has enabled genome-wide, high-resolution mapping of genes to phenotypes, but assessing the effect of a given genetic perturbation requires evaluation of each single guide RNA (sgRNA) in hundreds of cells to counter stochastic genetic drift and obtain robust results. However, resolution is limited in complex, heterogeneous models, such as organoids or tumors transplanted into mice, because achieving sufficient representation requires impractical scaling. This is due to bottleneck effects and biological heterogeneity of cell populations. Here we introduce CRISPR-StAR, a screening method that uses internal controls generated by activating sgRNAs in only half the progeny of each cell subsequent to re-expansion of the cell clone. Our method overcomes both intrinsic and extrinsic heterogeneity as well as genetic drift in bottlenecks by generating clonal, single-cell-derived intrinsic controls. We use CRISPR-StAR to identify in-vivo-specific genetic dependencies in a genome-wide screen in mouse melanoma. Benchmarking against conventional screening demonstrates the improved data quality provided by this technology.

Abstract Image

CRISPR-StAR能够在复杂的体内模型中进行高分辨率的遗传筛选
利用CRISPR-Cas9进行基因筛选可以实现全基因组、高分辨率的基因表型定位,但评估给定遗传扰动的影响需要评估数百个细胞中的每个单个引导RNA (sgRNA),以对抗随机遗传漂变并获得可靠的结果。然而,在复杂的异质模型(如移植到小鼠体内的类器官或肿瘤)中,分辨率受到限制,因为要获得足够的表征需要不切实际的缩放。这是由于细胞群的瓶颈效应和生物异质性。在这里,我们介绍了CRISPR-StAR,这是一种筛选方法,它使用内部控制,通过在细胞克隆重新扩增后仅在每个细胞的一半后代中激活sgrna而产生。我们的方法通过产生克隆,单细胞衍生的内在控制来克服内在和外在异质性以及瓶颈中的遗传漂变。我们使用CRISPR-StAR在小鼠黑色素瘤的全基因组筛选中鉴定体内特异性遗传依赖性。与常规筛选相比,基准测试表明该技术提高了数据质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature biotechnology
Nature biotechnology 工程技术-生物工程与应用微生物
CiteScore
63.00
自引率
1.70%
发文量
382
审稿时长
3 months
期刊介绍: Nature Biotechnology is a monthly journal that focuses on the science and business of biotechnology. It covers a wide range of topics including technology/methodology advancements in the biological, biomedical, agricultural, and environmental sciences. The journal also explores the commercial, political, ethical, legal, and societal aspects of this research. The journal serves researchers by providing peer-reviewed research papers in the field of biotechnology. It also serves the business community by delivering news about research developments. This approach ensures that both the scientific and business communities are well-informed and able to stay up-to-date on the latest advancements and opportunities in the field. Some key areas of interest in which the journal actively seeks research papers include molecular engineering of nucleic acids and proteins, molecular therapy, large-scale biology, computational biology, regenerative medicine, imaging technology, analytical biotechnology, applied immunology, food and agricultural biotechnology, and environmental biotechnology. In summary, Nature Biotechnology is a comprehensive journal that covers both the scientific and business aspects of biotechnology. It strives to provide researchers with valuable research papers and news while also delivering important scientific advancements to the business community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信