Improving binding affinity prediction by emphasizing local features of drug and protein.

Daejin Choi, Sangjun Park
{"title":"Improving binding affinity prediction by emphasizing local features of drug and protein.","authors":"Daejin Choi, Sangjun Park","doi":"10.1016/j.compbiolchem.2024.108310","DOIUrl":null,"url":null,"abstract":"<p><p>Binding affinity prediction has been considered as a fundamental task in drug discovery. Despite much effort to improve accuracy of binding affinity prediction, the prior work considered only macro-level features that can represent the characteristics of the whole architecture of a drug and a target protein, and the features from local structure of the drug and the protein tend to be lost. In this paper, we propose a deep learning model that can comprehensively extract the local features of both a drug and a target protein for accurate binding affinity prediction. The proposed model consists of two components named as Multi-Stream CNN and Multi-Stream GCN, each of which is responsible for capturing micro-level characteristics or local features from subsequences of a target protein sequence and subgraph of a drug molecule, respectively. Having multiple streams consisting of different numbers of layers, both the components can compute and preserve the local features with a stream consisting of a single layer. Our evaluation with two popular datasets, Davis and KIBA, demonstrates that the proposed model outperforms all the baseline models using the global features, implying that local features play significant roles of binding affinity prediction.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108310"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Binding affinity prediction has been considered as a fundamental task in drug discovery. Despite much effort to improve accuracy of binding affinity prediction, the prior work considered only macro-level features that can represent the characteristics of the whole architecture of a drug and a target protein, and the features from local structure of the drug and the protein tend to be lost. In this paper, we propose a deep learning model that can comprehensively extract the local features of both a drug and a target protein for accurate binding affinity prediction. The proposed model consists of two components named as Multi-Stream CNN and Multi-Stream GCN, each of which is responsible for capturing micro-level characteristics or local features from subsequences of a target protein sequence and subgraph of a drug molecule, respectively. Having multiple streams consisting of different numbers of layers, both the components can compute and preserve the local features with a stream consisting of a single layer. Our evaluation with two popular datasets, Davis and KIBA, demonstrates that the proposed model outperforms all the baseline models using the global features, implying that local features play significant roles of binding affinity prediction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信