{"title":"Improving binding affinity prediction by emphasizing local features of drug and protein","authors":"Daejin Choi , Sangjun Park","doi":"10.1016/j.compbiolchem.2024.108310","DOIUrl":null,"url":null,"abstract":"<div><div>Binding affinity prediction has been considered as a fundamental task in drug discovery. Despite much effort to improve accuracy of binding affinity prediction, the prior work considered only macro-level features that can represent the characteristics of the whole architecture of a drug and a target protein, and the features from local structure of the drug and the protein tend to be lost. In this paper, we propose a deep learning model that can comprehensively extract the local features of both a drug and a target protein for accurate binding affinity prediction. The proposed model consists of two components named as Multi-Stream CNN and Multi-Stream GCN, each of which is responsible for capturing micro-level characteristics or local features from subsequences of a target protein sequence and subgraph of a drug molecule, respectively. Having multiple streams consisting of different numbers of layers, both the components can compute and preserve the local features with a stream consisting of a single layer. Our evaluation with two popular datasets, Davis and KIBA, demonstrates that the proposed model outperforms all the baseline models using the global features, implying that local features play significant roles of binding affinity prediction.</div></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"115 ","pages":"Article 108310"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124002986","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Binding affinity prediction has been considered as a fundamental task in drug discovery. Despite much effort to improve accuracy of binding affinity prediction, the prior work considered only macro-level features that can represent the characteristics of the whole architecture of a drug and a target protein, and the features from local structure of the drug and the protein tend to be lost. In this paper, we propose a deep learning model that can comprehensively extract the local features of both a drug and a target protein for accurate binding affinity prediction. The proposed model consists of two components named as Multi-Stream CNN and Multi-Stream GCN, each of which is responsible for capturing micro-level characteristics or local features from subsequences of a target protein sequence and subgraph of a drug molecule, respectively. Having multiple streams consisting of different numbers of layers, both the components can compute and preserve the local features with a stream consisting of a single layer. Our evaluation with two popular datasets, Davis and KIBA, demonstrates that the proposed model outperforms all the baseline models using the global features, implying that local features play significant roles of binding affinity prediction.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.