David Reinecke, Nader Maarouf, Andrew Smith, Daniel Alber, John Markert, Nicolas K Goff, Todd C Hollon, Asadur Chowdury, Cheng Jiang, Xinhai Hou, Anna-Katharina Meissner, Gina Fürtjes, Maximilian I Ruge, Daniel Ruess, Thomas Stehle, Abdulkader Al-Shughri, Lisa I Körner, Georg Widhalm, Thomas Roetzer-Pejrimovsky, John G Golfinos, Matija Snuderl, Volker Neuschmelting, Daniel A Orringer
{"title":"Fast intraoperative detection of primary CNS lymphoma and differentiation from common CNS tumors using stimulated Raman histology and deep learning.","authors":"David Reinecke, Nader Maarouf, Andrew Smith, Daniel Alber, John Markert, Nicolas K Goff, Todd C Hollon, Asadur Chowdury, Cheng Jiang, Xinhai Hou, Anna-Katharina Meissner, Gina Fürtjes, Maximilian I Ruge, Daniel Ruess, Thomas Stehle, Abdulkader Al-Shughri, Lisa I Körner, Georg Widhalm, Thomas Roetzer-Pejrimovsky, John G Golfinos, Matija Snuderl, Volker Neuschmelting, Daniel A Orringer","doi":"10.1093/neuonc/noae270","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate intraoperative diagnosis is crucial for differentiating between primary CNS lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge.</p><p><strong>Methods: </strong>We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within less than three minutes. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and two additional independent test cohorts. We trained on 54,000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS neoplastic/non-neoplastic lesions. Training and test data were collected from four tertiary international medical centers. The final histopathological diagnosis served as ground-truth.</p><p><strong>Results: </strong>In the prospective test cohort of PCNSL and non-PCNSL entities (n=160), RapidLymphoma achieved an overall balanced accuracy of 97.81% ±0.91, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 77.77%). The additional test cohorts (n=420, n=59) reached balanced accuracy rates of 95.44% ±0.74 and 95.57% ±2.47 in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed RapidLymphoma's capabilities to detect class-specific histomorphological key features.</p><p><strong>Conclusions: </strong>RapidLymphoma proves reliable and valid for intraoperative PCNSL detection and differentiation from other CNS entities. It provides visual feedback within three minutes, enabling fast clinical decision-making and subsequent treatment strategy planning.</p>","PeriodicalId":19377,"journal":{"name":"Neuro-oncology","volume":" ","pages":""},"PeriodicalIF":16.4000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuro-oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/neuonc/noae270","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurate intraoperative diagnosis is crucial for differentiating between primary CNS lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge.
Methods: We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within less than three minutes. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and two additional independent test cohorts. We trained on 54,000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS neoplastic/non-neoplastic lesions. Training and test data were collected from four tertiary international medical centers. The final histopathological diagnosis served as ground-truth.
Results: In the prospective test cohort of PCNSL and non-PCNSL entities (n=160), RapidLymphoma achieved an overall balanced accuracy of 97.81% ±0.91, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 77.77%). The additional test cohorts (n=420, n=59) reached balanced accuracy rates of 95.44% ±0.74 and 95.57% ±2.47 in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed RapidLymphoma's capabilities to detect class-specific histomorphological key features.
Conclusions: RapidLymphoma proves reliable and valid for intraoperative PCNSL detection and differentiation from other CNS entities. It provides visual feedback within three minutes, enabling fast clinical decision-making and subsequent treatment strategy planning.
期刊介绍:
Neuro-Oncology, the official journal of the Society for Neuro-Oncology, has been published monthly since January 2010. Affiliated with the Japan Society for Neuro-Oncology and the European Association of Neuro-Oncology, it is a global leader in the field.
The journal is committed to swiftly disseminating high-quality information across all areas of neuro-oncology. It features peer-reviewed articles, reviews, symposia on various topics, abstracts from annual meetings, and updates from neuro-oncology societies worldwide.