David S Hage, Sadia Sharmeen, Kyungah Suh, B K Sajeeb, Md Masudur Rahman, Jada Ayars
{"title":"Analysis of solution-phase biomolecular interactions by liquid chromatography: General strategies and recent developments.","authors":"David S Hage, Sadia Sharmeen, Kyungah Suh, B K Sajeeb, Md Masudur Rahman, Jada Ayars","doi":"10.1016/j.jpba.2024.116632","DOIUrl":null,"url":null,"abstract":"<p><p>The analysis of biomolecular interactions is important in characterizing and understanding many fundamental processes that occur in the body and biological systems. A variety of methods are available for studying the extent and rate of binding of these interactions. Some of these techniques are homogeneous methods, with all interacting components being present in the solution-phase, while others are heterogeneous, such as involving both solution-phase and solid-phase components. LC and HPLC have often been used to study biomolecular processes. Although these chromatographic methods make use of both a liquid phase (i.e., the mobile phase and applied samples) and a solid phase (the stationary phase and support), they can be used to study solution-phase interactions. This review examines several strategies that have been developed and employed to use LC and HPLC for this purpose. These strategies include the Hummel-Dreyer method, solution-phase frontal analysis, and the use of physical entrapment for a soluble component of a biomolecular interaction. Other strategies that are discussed are those in which the stationary phase of the column is used as a secondary component or capture agent when studying a solution-phase interaction, as occurs in normal-role affinity chromatography and ultrafast affinity extraction. The general principles for each of these strategies will be considered, along with their advantages, potential limitations, and applications.</p>","PeriodicalId":16685,"journal":{"name":"Journal of pharmaceutical and biomedical analysis","volume":"255 ","pages":"116632"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmaceutical and biomedical analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jpba.2024.116632","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of biomolecular interactions is important in characterizing and understanding many fundamental processes that occur in the body and biological systems. A variety of methods are available for studying the extent and rate of binding of these interactions. Some of these techniques are homogeneous methods, with all interacting components being present in the solution-phase, while others are heterogeneous, such as involving both solution-phase and solid-phase components. LC and HPLC have often been used to study biomolecular processes. Although these chromatographic methods make use of both a liquid phase (i.e., the mobile phase and applied samples) and a solid phase (the stationary phase and support), they can be used to study solution-phase interactions. This review examines several strategies that have been developed and employed to use LC and HPLC for this purpose. These strategies include the Hummel-Dreyer method, solution-phase frontal analysis, and the use of physical entrapment for a soluble component of a biomolecular interaction. Other strategies that are discussed are those in which the stationary phase of the column is used as a secondary component or capture agent when studying a solution-phase interaction, as occurs in normal-role affinity chromatography and ultrafast affinity extraction. The general principles for each of these strategies will be considered, along with their advantages, potential limitations, and applications.
期刊介绍:
This journal is an international medium directed towards the needs of academic, clinical, government and industrial analysis by publishing original research reports and critical reviews on pharmaceutical and biomedical analysis. It covers the interdisciplinary aspects of analysis in the pharmaceutical, biomedical and clinical sciences, including developments in analytical methodology, instrumentation, computation and interpretation. Submissions on novel applications focusing on drug purity and stability studies, pharmacokinetics, therapeutic monitoring, metabolic profiling; drug-related aspects of analytical biochemistry and forensic toxicology; quality assurance in the pharmaceutical industry are also welcome.
Studies from areas of well established and poorly selective methods, such as UV-VIS spectrophotometry (including derivative and multi-wavelength measurements), basic electroanalytical (potentiometric, polarographic and voltammetric) methods, fluorimetry, flow-injection analysis, etc. are accepted for publication in exceptional cases only, if a unique and substantial advantage over presently known systems is demonstrated. The same applies to the assay of simple drug formulations by any kind of methods and the determination of drugs in biological samples based merely on spiked samples. Drug purity/stability studies should contain information on the structure elucidation of the impurities/degradants.