From ancestor to pathogen: Expansion and evolutionary adaptations of multidrug resistance causing MFS efflux pumps in mycobacteria.

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY
Gene Pub Date : 2024-12-12 DOI:10.1016/j.gene.2024.149160
Garima Singh, Yusuf Akhter
{"title":"From ancestor to pathogen: Expansion and evolutionary adaptations of multidrug resistance causing MFS efflux pumps in mycobacteria.","authors":"Garima Singh, Yusuf Akhter","doi":"10.1016/j.gene.2024.149160","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistance (MDR) in Mycobacterium tuberculosis (Mtb) is a growing threat. Efflux pumps, particularly those belonging to the Major Facilitator Superfamily (MFS), play a key role in MDR. This study investigated MFS transporters across Mycobacterium spp. to understand their evolution and role in drug resistance. We conducted a proteome-wide analysis of MFS proteins in Mtb, Mycobacterium smegmatis (non-pathogenic), and Mycobacterium canettii (closely related ancestor of Mtb). Mtb, known for its MDR, possessed the highest abundance of MFS drug efflux pumps, while Mycobacterium smegmatis had the least. This suggests a link between MFS drug efflux pump abundance and MDR phenotypes. Interestingly, Mycobacterium canettii displayed an intermediate level, possibly indicating the presence of these pumps before the emergence of Mtb as a pathogen. Further analysis of Mtb proteome revealed 31 putative MFS transporters and 3 proteins from expanded MFS subfamilies. Phylogenetic analysis categorized them into thirteen distinct families based on structural features. These findings highlight the potential importance of MFS transporters in MDR and the pathogenicity of Mtb. Overall, this study highlights the evolutionary role of MFS transporters in bacterial adaptation to antibiotics. The observed correlation between efflux pump abundance and MDR suggests MFS transporters as promising targets for future anti-tuberculosis therapies. Further research on specific transporter functions within MFS subfamilies can pave the way for novel therapeutic strategies.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149160"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149160","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Multidrug resistance (MDR) in Mycobacterium tuberculosis (Mtb) is a growing threat. Efflux pumps, particularly those belonging to the Major Facilitator Superfamily (MFS), play a key role in MDR. This study investigated MFS transporters across Mycobacterium spp. to understand their evolution and role in drug resistance. We conducted a proteome-wide analysis of MFS proteins in Mtb, Mycobacterium smegmatis (non-pathogenic), and Mycobacterium canettii (closely related ancestor of Mtb). Mtb, known for its MDR, possessed the highest abundance of MFS drug efflux pumps, while Mycobacterium smegmatis had the least. This suggests a link between MFS drug efflux pump abundance and MDR phenotypes. Interestingly, Mycobacterium canettii displayed an intermediate level, possibly indicating the presence of these pumps before the emergence of Mtb as a pathogen. Further analysis of Mtb proteome revealed 31 putative MFS transporters and 3 proteins from expanded MFS subfamilies. Phylogenetic analysis categorized them into thirteen distinct families based on structural features. These findings highlight the potential importance of MFS transporters in MDR and the pathogenicity of Mtb. Overall, this study highlights the evolutionary role of MFS transporters in bacterial adaptation to antibiotics. The observed correlation between efflux pump abundance and MDR suggests MFS transporters as promising targets for future anti-tuberculosis therapies. Further research on specific transporter functions within MFS subfamilies can pave the way for novel therapeutic strategies.

从祖先到病原体:分枝杆菌中引起多药耐药性的 MFS 外排泵的扩展和进化适应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信