Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery.

IF 3.3 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kisalay Jha, Puja Jaishwal, Thakur Prasad Yadav, Satarudra Prakash Singh
{"title":"Self-assembling of coiled-coil peptides into virus-like particles: Basic principles, properties, design, and applications with special focus on vaccine design and delivery.","authors":"Kisalay Jha, Puja Jaishwal, Thakur Prasad Yadav, Satarudra Prakash Singh","doi":"10.1016/j.bpc.2024.107375","DOIUrl":null,"url":null,"abstract":"<p><p>Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e., icosahedral structures), and the ability to generate a robust immune response (with multivalent epitopes) through activation of innate and/or adaptive immune signals. In this regard, coiled-coil (CC) domains are suitable building blocks for designing VLP because of their programmable interaction specificity, affinity, and well-established sequence-to-structure relationships. Generally, two CC domains with different oligomeric states (trimer and pentamer) are fused to form a monomeric protein through a short, flexible spacer sequence. By using combinations of symmetry axes (2-, 3- and 5- folds) that are unique to the geometry of the desired protein cage, it is possible, in principle, to assemble well-defined protein cages like VLP. In this review, we have discussed the crystallographic rules and the basic principles involved in the design of CC-based VLP. It also explored the functions of numerous noncovalent interactions in generating stable VLP structures, which play a crucial role in improving the properties of vaccine immunogenicity, drug delivery, and 3D cell culturing.</p>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":"318 ","pages":"107375"},"PeriodicalIF":3.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpc.2024.107375","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Self-assembling peptide nanoparticles (SAPN) based delivery systems, including virus-like particles (VLP), have shown great potential for becoming prominent in next-generation vaccine and drug development. The VLP can mimic properties of natural viral capsid in terms of size (20-200 nm), geometry (i.e., icosahedral structures), and the ability to generate a robust immune response (with multivalent epitopes) through activation of innate and/or adaptive immune signals. In this regard, coiled-coil (CC) domains are suitable building blocks for designing VLP because of their programmable interaction specificity, affinity, and well-established sequence-to-structure relationships. Generally, two CC domains with different oligomeric states (trimer and pentamer) are fused to form a monomeric protein through a short, flexible spacer sequence. By using combinations of symmetry axes (2-, 3- and 5- folds) that are unique to the geometry of the desired protein cage, it is possible, in principle, to assemble well-defined protein cages like VLP. In this review, we have discussed the crystallographic rules and the basic principles involved in the design of CC-based VLP. It also explored the functions of numerous noncovalent interactions in generating stable VLP structures, which play a crucial role in improving the properties of vaccine immunogenicity, drug delivery, and 3D cell culturing.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biophysical chemistry
Biophysical chemistry 生物-生化与分子生物学
CiteScore
6.10
自引率
10.50%
发文量
121
审稿时长
20 days
期刊介绍: Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信