{"title":"Optimized mesopore design in ginkgo nuts-derived hyper-crosslinked porous carbon for enhancing supercapacitor capacitance performance.","authors":"Pinghua Zhang, Yangyang Li, Jian Xiao, Wenzhu Ouyang, Ligang Zhang, Dejin Zhang, Guizhi Wang, Lin Liu, Youpeng Zuo, Chunsheng Wang, Chong Chen, Yunpeng Zhao","doi":"10.1016/j.jcis.2024.12.054","DOIUrl":null,"url":null,"abstract":"<p><p>The capacitance performance of a co-doped carbon-based supercapacitor derived from Ginkgo nuts was significantly enhanced by optimizing the mesoporous structure through high-temperature pyrolysis combined with KOH activation. The precisely engineered GBHHPC-750-4 is characterized by a hyper-crosslinked 3D hierarchical porous structure, with an exceptionally high specific surface area of 3163.9 m<sup>2</sup>/g, a substantial mesopore proportion (Vmeso/Vt = 74.1 %), a broad pore size range of 2-10 nm, and elevated levels of heteroatom doping (3.4 at.% N, 8.3 at.% O, 1.6 at.% P). The symmetric supercapacitor based on the GBHHPC-750-4 electrode exhibits a peak specific capacitance of 256 F/g at 1 A/g, achieves an energy density of 118.2 Wh kg<sup>-1</sup>, maintains an impressive rate capability of 63.6 % across a wide current range (0.5-20 A/g) and demonstrates a prolonged cycle lifespan with 88.0 % capacitance retention after 5000 cycles in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMBF<sub>4</sub>) electrolyte, emphasizing the substantial potential of the optimized mesoporous carbon material for energy storage applications.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"221-231"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.054","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The capacitance performance of a co-doped carbon-based supercapacitor derived from Ginkgo nuts was significantly enhanced by optimizing the mesoporous structure through high-temperature pyrolysis combined with KOH activation. The precisely engineered GBHHPC-750-4 is characterized by a hyper-crosslinked 3D hierarchical porous structure, with an exceptionally high specific surface area of 3163.9 m2/g, a substantial mesopore proportion (Vmeso/Vt = 74.1 %), a broad pore size range of 2-10 nm, and elevated levels of heteroatom doping (3.4 at.% N, 8.3 at.% O, 1.6 at.% P). The symmetric supercapacitor based on the GBHHPC-750-4 electrode exhibits a peak specific capacitance of 256 F/g at 1 A/g, achieves an energy density of 118.2 Wh kg-1, maintains an impressive rate capability of 63.6 % across a wide current range (0.5-20 A/g) and demonstrates a prolonged cycle lifespan with 88.0 % capacitance retention after 5000 cycles in 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMBF4) electrolyte, emphasizing the substantial potential of the optimized mesoporous carbon material for energy storage applications.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies