Establishment and application of a rapid visual detection method for Clostridium perfringens in chicken products based on helical loop-mediated isothermal amplification (HAMP).
Yuheng Yang, Long Du, Congcong Li, Xinxiao Zhang, Fang Liu, Daoying Wang, Zhilan Sun, Songsong Zhao
{"title":"Establishment and application of a rapid visual detection method for Clostridium perfringens in chicken products based on helical loop-mediated isothermal amplification (HAMP).","authors":"Yuheng Yang, Long Du, Congcong Li, Xinxiao Zhang, Fang Liu, Daoying Wang, Zhilan Sun, Songsong Zhao","doi":"10.1111/1750-3841.17556","DOIUrl":null,"url":null,"abstract":"<p><p>Clostridium perfringens is a significant foodborne pathogen in chicken products. Rapid on-site detection of C. perfringens is crucial for mitigating the incidence of foodborne illnesses by enabling the prompt identification and recall of contaminated food products. A rapid and visual detection method for C. perfringens in chicken products was developed using helical loop-mediated isothermal amplification (HAMP) technology combined with SYBR Green I fluorescent staining. The reaction temperature, time, and reagent concentrations of HAMP technique were optimized firstly. HAMP displayed high specificity, effectively distinguishing C. perfringens from 18 other common pathogens in chicken products. HAMP also exhibited higher sensitivity (78 fg/µL) compared to endpoint PCR and real-time quantitative PCR (qPCR). The detection limit of HAMP for non-enriched samples was 6.8 × 10<sup>2</sup> CFU/g, which improved to 68 and 6.8 CFU/g after 5 and 10 h of enrichment, respectively. The detection limit of HAMP was lower by 2 and 1 orders of magnitude compared to endpoint PCR and qPCR under the same conditions. On-site testing of commercially available ready-to-eat chicken products showed that HAMP had the same results as traditional culture methods, indicating the significant potential of HAMP for on-site detection of C. perfringens. This method offered a rapid, accurate, and visual means of detecting C. perfringens in chicken products, making it well-suited for on-site testing. This research represented the first use of the HAMP method for detecting C. perfringens.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17556","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clostridium perfringens is a significant foodborne pathogen in chicken products. Rapid on-site detection of C. perfringens is crucial for mitigating the incidence of foodborne illnesses by enabling the prompt identification and recall of contaminated food products. A rapid and visual detection method for C. perfringens in chicken products was developed using helical loop-mediated isothermal amplification (HAMP) technology combined with SYBR Green I fluorescent staining. The reaction temperature, time, and reagent concentrations of HAMP technique were optimized firstly. HAMP displayed high specificity, effectively distinguishing C. perfringens from 18 other common pathogens in chicken products. HAMP also exhibited higher sensitivity (78 fg/µL) compared to endpoint PCR and real-time quantitative PCR (qPCR). The detection limit of HAMP for non-enriched samples was 6.8 × 102 CFU/g, which improved to 68 and 6.8 CFU/g after 5 and 10 h of enrichment, respectively. The detection limit of HAMP was lower by 2 and 1 orders of magnitude compared to endpoint PCR and qPCR under the same conditions. On-site testing of commercially available ready-to-eat chicken products showed that HAMP had the same results as traditional culture methods, indicating the significant potential of HAMP for on-site detection of C. perfringens. This method offered a rapid, accurate, and visual means of detecting C. perfringens in chicken products, making it well-suited for on-site testing. This research represented the first use of the HAMP method for detecting C. perfringens.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.