Jiayue Zhou, Dong Li, Yanqun Xu, Xiaochen Zhang, Lei Wang, Lin Zhou, Liang Zou, Zisheng Luo
{"title":"Biomolecule-functionalized polydiacetylene assembly for visual and on-site sensing of (E)-2-hexenal in fruits.","authors":"Jiayue Zhou, Dong Li, Yanqun Xu, Xiaochen Zhang, Lei Wang, Lin Zhou, Liang Zou, Zisheng Luo","doi":"10.1111/1750-3841.17395","DOIUrl":null,"url":null,"abstract":"<p><p>(E)-2-Hexenal (E2H) is an important volatile organic compound (VOC) that can serve as a marker for fruit quality sensing and shelf-life evaluation. However, visual and portable sensors for E2H have not been reported mainly because of the difficulty in selective response to E2H while avoiding interference from other VOC, especially isomers. Herein, we developed a novel colorimetric sensor based on thiol-functionalized polydiacetylene assembly (PDA-SH/PDA) for the quantitative and selectivity of E2H. The mechanism was that E2H underwent a Michael addition reaction with sulfhydryl groups in PDA-SH/PDA. The Michael addition reaction destroyed the hydrogen bond and distorted the conjugated molecular system, resulting in colorimetric responses. Under optimal conditions, a good linear relationship was observed between E2H concentration and red colorimetric shift (R<sup>2</sup> = 0.9679). The E2H sensor yields a high analytical sensitivity of 1.5203% and a limit of detection of 0.015 g L<sup>-1</sup>. Besides, the PDA-SH/PDA sensor can be used to visually distinguish E2H and its isomer (Z)-3-hexenal. The PDA-SH/PDA sensor yielded a statistically significant difference in red colorimetric shift (p < 0.01) between the pairs of isomers in the ripeness of fruits. At last, the sensor was utilized for detecting E2H in grapes from different shelf lives. We found that the E2H concentration increased from 66.16 ± 1.54 to 67.56 ± 1.30 µg L<sup>-1</sup> as storage time was prolonged. The results of this research not only demonstrated the feasibility of visual and on-site detection of E2H but also provided potential promise for portable fruit quality sensing and shelf-life evaluation.</p>","PeriodicalId":193,"journal":{"name":"Journal of Food Science","volume":" ","pages":"9271-9282"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1750-3841.17395","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
(E)-2-Hexenal (E2H) is an important volatile organic compound (VOC) that can serve as a marker for fruit quality sensing and shelf-life evaluation. However, visual and portable sensors for E2H have not been reported mainly because of the difficulty in selective response to E2H while avoiding interference from other VOC, especially isomers. Herein, we developed a novel colorimetric sensor based on thiol-functionalized polydiacetylene assembly (PDA-SH/PDA) for the quantitative and selectivity of E2H. The mechanism was that E2H underwent a Michael addition reaction with sulfhydryl groups in PDA-SH/PDA. The Michael addition reaction destroyed the hydrogen bond and distorted the conjugated molecular system, resulting in colorimetric responses. Under optimal conditions, a good linear relationship was observed between E2H concentration and red colorimetric shift (R2 = 0.9679). The E2H sensor yields a high analytical sensitivity of 1.5203% and a limit of detection of 0.015 g L-1. Besides, the PDA-SH/PDA sensor can be used to visually distinguish E2H and its isomer (Z)-3-hexenal. The PDA-SH/PDA sensor yielded a statistically significant difference in red colorimetric shift (p < 0.01) between the pairs of isomers in the ripeness of fruits. At last, the sensor was utilized for detecting E2H in grapes from different shelf lives. We found that the E2H concentration increased from 66.16 ± 1.54 to 67.56 ± 1.30 µg L-1 as storage time was prolonged. The results of this research not only demonstrated the feasibility of visual and on-site detection of E2H but also provided potential promise for portable fruit quality sensing and shelf-life evaluation.
期刊介绍:
The goal of the Journal of Food Science is to offer scientists, researchers, and other food professionals the opportunity to share knowledge of scientific advancements in the myriad disciplines affecting their work, through a respected peer-reviewed publication. The Journal of Food Science serves as an international forum for vital research and developments in food science.
The range of topics covered in the journal include:
-Concise Reviews and Hypotheses in Food Science
-New Horizons in Food Research
-Integrated Food Science
-Food Chemistry
-Food Engineering, Materials Science, and Nanotechnology
-Food Microbiology and Safety
-Sensory and Consumer Sciences
-Health, Nutrition, and Food
-Toxicology and Chemical Food Safety
The Journal of Food Science publishes peer-reviewed articles that cover all aspects of food science, including safety and nutrition. Reviews should be 15 to 50 typewritten pages (including tables, figures, and references), should provide in-depth coverage of a narrowly defined topic, and should embody careful evaluation (weaknesses, strengths, explanation of discrepancies in results among similar studies) of all pertinent studies, so that insightful interpretations and conclusions can be presented. Hypothesis papers are especially appropriate in pioneering areas of research or important areas that are afflicted by scientific controversy.