Quantifying Hexafluoroisopropanol’s H-Bond Donor Ability: Infrared Photodissociation Spectroscopy of Halide Anion HFIP Complexes

Milena, Barp, Knut R, Asmis, Ralf, Tonner-Zech, Jer-Lai, Kuo, Florian, Kreuter, Qian-Rui, Huang, Jiaye, Jin, Franka. E., Ninov
{"title":"Quantifying Hexafluoroisopropanol’s H-Bond Donor Ability: Infrared Photodissociation Spectroscopy of Halide Anion HFIP Complexes","authors":"Milena, Barp, Knut R, Asmis, Ralf, Tonner-Zech, Jer-Lai, Kuo, Florian, Kreuter, Qian-Rui, Huang, Jiaye, Jin, Franka. E., Ninov","doi":"10.26434/chemrxiv-2024-47m1r","DOIUrl":null,"url":null,"abstract":"We report on the gas phase vibrational spectroscopy (3500-950 cm-1) of halide anion complexes with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and its partially deuterated analog (HFIP-d1). Infrared photodissociation spectra of messenger-tagged Xˉ(HFIP/HFIP-d1), with Xˉ = Clˉ, Brˉ, and Iˉ together with electronic structure calculations reveal O-H(D) stretching fundamentals that are red-shifted twice as much as those for the corresponding complexes with isopropanol and water, directly reflecting HFIP’s enhanced hydrogen-bond donor ability. The harmonic analysis of the bands in the fingerprint region reveals that HFIP assumes a synperiplanar conformation in the complexes. The consideration of anharmonic effects is necessary to recover the efficient coupling between stretching and bending modes in the OH stretching region. An energy decomposition analysis shows that the roughly twice as large binding energy in the HFIP complexes vs. i-PrOH and water is determined mainly by differences in the electrostatic attraction. The observed red-shifts, which reflect the extent of charge transfer along the coordinate of the proton transfer reaction Xˉ + HM → XH + Mˉ, correlate qualitatively with the difference in the proton affinities ΔPA = PA(Xˉ) – PA(Mˉ). A more quantitative agreement requires also considering differences in the hydrogen bond angle.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-47m1r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We report on the gas phase vibrational spectroscopy (3500-950 cm-1) of halide anion complexes with 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) and its partially deuterated analog (HFIP-d1). Infrared photodissociation spectra of messenger-tagged Xˉ(HFIP/HFIP-d1), with Xˉ = Clˉ, Brˉ, and Iˉ together with electronic structure calculations reveal O-H(D) stretching fundamentals that are red-shifted twice as much as those for the corresponding complexes with isopropanol and water, directly reflecting HFIP’s enhanced hydrogen-bond donor ability. The harmonic analysis of the bands in the fingerprint region reveals that HFIP assumes a synperiplanar conformation in the complexes. The consideration of anharmonic effects is necessary to recover the efficient coupling between stretching and bending modes in the OH stretching region. An energy decomposition analysis shows that the roughly twice as large binding energy in the HFIP complexes vs. i-PrOH and water is determined mainly by differences in the electrostatic attraction. The observed red-shifts, which reflect the extent of charge transfer along the coordinate of the proton transfer reaction Xˉ + HM → XH + Mˉ, correlate qualitatively with the difference in the proton affinities ΔPA = PA(Xˉ) – PA(Mˉ). A more quantitative agreement requires also considering differences in the hydrogen bond angle.
量化六氟异丙醇的氢键供体能力:卤化阴离子 HFIP 复合物的红外光解离谱学
我们报告了卤化物阴离子与 1,1,1,3,3,3- 六氟异丙醇(HFIP)及其部分氚代类似物(HFIP-d1)的气相振动光谱(3500-950 cm-1)。信使标记的 Xˉ(HFIP/HFIP-d1)(Xˉ = Clˉ、Brˉ和 Iˉ)的红外光解离光谱以及电子结构计算揭示了 O-H(D)伸展基本原理,其红移是异丙醇和水的相应复合物的两倍,直接反映了 HFIP 增强的氢键供体能力。对指纹区频带的谐波分析显示,HFIP 在复合物中呈同步平面构象。要恢复羟基伸展区伸展和弯曲模式之间的有效耦合,就必须考虑非谐波效应。能量分解分析表明,HFIP 复合物的结合能是 i-PrOH 和水的大约两倍,这主要是由静电吸引力的差异决定的。观察到的红移反映了沿着质子转移反应 Xˉ + HM → XH + Mˉ 坐标的电荷转移程度,与质子亲和力 ΔPA = PA(Xˉ) - PA(Mˉ) 的差异有定性关联。要在定量上达成一致,还需要考虑氢键角度的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信