Balancing Reactant Adsorption for Ultra-Stable Electrocatalytic Methanol Oxidation Reaction

Jianhui, Wang, Yang, Liu, Ruyan, Wu, Yongzhen, Jin, Jiaye, Dong, Hongju, Li
{"title":"Balancing Reactant Adsorption for Ultra-Stable Electrocatalytic Methanol Oxidation Reaction","authors":"Jianhui, Wang, Yang, Liu, Ruyan, Wu, Yongzhen, Jin, Jiaye, Dong, Hongju, Li","doi":"10.26434/chemrxiv-2024-dtt68","DOIUrl":null,"url":null,"abstract":"The practical application of the electrocatalytic methanol oxidation reaction (EMOR) has long been hindered by the lack of active and stable catalysts. Herein, we report a unique dealloyed PtMn catalyst on carbon cloth (d-PtMn/CC) characterized by a compressively strained Pt surface and a Mn concentration-gradient core. This d-PtMn/CC catalyst demonstrates EMOR activity that is 7–14 times higher than that of conventional Pt/CC catalysts in all-pH electrolytes, while exhibiting exceptional resistance to catalytic poisoning over a broad potential range of 0.4 to 1.2 V vs. RHE. When employed in direct methanol fuel cells, it achieves 111.6 mW cm−2 for over 10 hours at ultralow 0.59 mgPt cm−2, substantially outperforming commercial Pt/C catalysts. Comparative analyses of adsorbed reactants/intermediates revealed that imbalanced adsorption of reactants on the catalyst surface is the primary cause of EMOR poisoning. The d-PtMn/CC catalyst, benefiting from surface compressive strain and ligand effects, maintains balanced reactant adsorption over the wide potential range, thereby achieving ultra-stable EMOR performance. These findings not only resolve the longstanding controversy regarding EMOR poisoning mechanism but also identify the effectiveness of the “ligand + surface strain” strategy in DMFCs, facilitating its practical applications.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-dtt68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of the electrocatalytic methanol oxidation reaction (EMOR) has long been hindered by the lack of active and stable catalysts. Herein, we report a unique dealloyed PtMn catalyst on carbon cloth (d-PtMn/CC) characterized by a compressively strained Pt surface and a Mn concentration-gradient core. This d-PtMn/CC catalyst demonstrates EMOR activity that is 7–14 times higher than that of conventional Pt/CC catalysts in all-pH electrolytes, while exhibiting exceptional resistance to catalytic poisoning over a broad potential range of 0.4 to 1.2 V vs. RHE. When employed in direct methanol fuel cells, it achieves 111.6 mW cm−2 for over 10 hours at ultralow 0.59 mgPt cm−2, substantially outperforming commercial Pt/C catalysts. Comparative analyses of adsorbed reactants/intermediates revealed that imbalanced adsorption of reactants on the catalyst surface is the primary cause of EMOR poisoning. The d-PtMn/CC catalyst, benefiting from surface compressive strain and ligand effects, maintains balanced reactant adsorption over the wide potential range, thereby achieving ultra-stable EMOR performance. These findings not only resolve the longstanding controversy regarding EMOR poisoning mechanism but also identify the effectiveness of the “ligand + surface strain” strategy in DMFCs, facilitating its practical applications.
平衡反应物吸附以实现超稳定电催化甲醇氧化反应
由于缺乏活性稳定的催化剂,电催化甲醇氧化反应(EMOR)的实际应用一直受到阻碍。在此,我们报道了一种独特的碳布合金PtMn催化剂(d-PtMn/CC),其特征是压缩应变的Pt表面和Mn浓度梯度的核心。这种d-PtMn/CC催化剂的EMOR活性比传统Pt/CC催化剂在所有ph值电解质中的EMOR活性高7-14倍,同时在0.4至1.2 V的宽电位范围内表现出优异的抗催化中毒能力。当用于直接甲醇燃料电池时,它在超低0.59 mgPt cm - 2下达到111.6 mW cm - 2超过10小时,大大优于商用Pt/C催化剂。吸附反应物/中间体的对比分析表明,反应物在催化剂表面的不平衡吸附是EMOR中毒的主要原因。d-PtMn/CC催化剂得益于表面压缩应变和配体效应,在较宽的电位范围内保持平衡的反应物吸附,从而实现超稳定的EMOR性能。这些发现不仅解决了长期以来关于EMOR中毒机制的争议,而且确定了“配体+表面应变”策略在dmfc中的有效性,为其实际应用提供了便利。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称
产品信息
麦克林
2-aminoethanol
麦克林
2-aminoethanol
阿拉丁
Glycine
阿拉丁
Sodium iodide
阿拉丁
Potassium sulfate
阿拉丁
glycine
阿拉丁
sodium iodide
阿拉丁
potassium sulfate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信