Relaxation optimized heteronuclear experiments for extending the size limit of RNA nuclear magnetic resonance

Jan, Marchant, Aarsh, Shah, Heer, Patel, Arjun, Kanjarpane, Michael, Summers
{"title":"Relaxation optimized heteronuclear experiments for extending the size limit of RNA nuclear magnetic resonance","authors":"Jan, Marchant, Aarsh, Shah, Heer, Patel, Arjun, Kanjarpane, Michael, Summers","doi":"10.26434/chemrxiv-2024-qs8d7-v2","DOIUrl":null,"url":null,"abstract":"The application of NMR to large RNAs has been limited by the inability to perform heteronuclear correlation experiments essential for resolving overlapping 1H NMR signals, determining inter-proton distance restraints and inter-helical orientations for structure calcula-tions, and evaluating conformational dynamics. Approaches exploiting 1H-13C correlations that are routinely applied to proteins and small RNAs of ~60 nucleotides or fewer are impractical for larger RNAs due to rapid dipolar relaxation of protons by their attached car-bons. Here we report a 2H-enhanced, 1H-15N correlation approach that enables atom-specific NMR characterization of much larger RNAs. Purine H8 transverse relaxation rates are reduced ~20-fold with ribose perdeuteration, enabling efficient magnetization transfer via two-bond 1H-15N couplings. We focus on H8-N9 correlation spectra which benefit from favorable N9 chemical shift anisotropy. Chemical shift assignment is enabled by retention of protons at the C1′ position, which allow measurement of two-bond H1′-N9 and through-space H1′-H8 correlations with only a minor effect on H8 relaxation. The approach is demonstrated for the 232 nucleotide HIV-1 Rev response element, where chemical shift assignments, 15N-edited nuclear Overhauser effects, and 1H-15N residual dipolar couplings are readily obtained from sensitive, high-resolution spectra. Heteronuclear correlated NMR methods that have been essential for the study of proteins can now be extended to RNAs of at least 78 kDa.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-qs8d7-v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The application of NMR to large RNAs has been limited by the inability to perform heteronuclear correlation experiments essential for resolving overlapping 1H NMR signals, determining inter-proton distance restraints and inter-helical orientations for structure calcula-tions, and evaluating conformational dynamics. Approaches exploiting 1H-13C correlations that are routinely applied to proteins and small RNAs of ~60 nucleotides or fewer are impractical for larger RNAs due to rapid dipolar relaxation of protons by their attached car-bons. Here we report a 2H-enhanced, 1H-15N correlation approach that enables atom-specific NMR characterization of much larger RNAs. Purine H8 transverse relaxation rates are reduced ~20-fold with ribose perdeuteration, enabling efficient magnetization transfer via two-bond 1H-15N couplings. We focus on H8-N9 correlation spectra which benefit from favorable N9 chemical shift anisotropy. Chemical shift assignment is enabled by retention of protons at the C1′ position, which allow measurement of two-bond H1′-N9 and through-space H1′-H8 correlations with only a minor effect on H8 relaxation. The approach is demonstrated for the 232 nucleotide HIV-1 Rev response element, where chemical shift assignments, 15N-edited nuclear Overhauser effects, and 1H-15N residual dipolar couplings are readily obtained from sensitive, high-resolution spectra. Heteronuclear correlated NMR methods that have been essential for the study of proteins can now be extended to RNAs of at least 78 kDa.
扩展RNA核磁共振尺寸极限的松弛优化异核实验
核磁共振在大rna上的应用一直受到限制,因为无法进行异核相关实验,而这些实验是解决重叠1H核磁共振信号、确定质子间距离约束和结构计算的螺旋间取向以及评估构象动力学所必需的。利用1H-13C相关性的方法通常应用于蛋白质和约60个核苷酸或更少的小rna,但对于较大的rna是不切实际的,因为它们所附着的碳原子会使质子快速偶极弛驰。在这里,我们报告了一种2h增强,1H-15N相关方法,可以对更大的rna进行原子特异性核磁共振表征。嘌呤H8横向弛豫速率降低了约20倍,通过双键1H-15N偶联实现了有效的磁化转移。我们的重点是H8-N9的相关光谱,受益于N9有利的化学位移各向异性。化学位移分配是通过质子在C1 ‘位置的保留而实现的,这允许测量双键H1 ’ -N9和通过空间H1 ' -H8的相关性,而对H8的弛豫只有很小的影响。该方法用于232个核苷酸的HIV-1 Rev响应元件,其中化学位移分配,15n编辑的核Overhauser效应和1H-15N残留偶极偶联很容易从敏感的高分辨率光谱中获得。对于蛋白质研究至关重要的异核相关核磁共振方法现在可以扩展到至少78 kDa的rna。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信