Why Ti3C2Tx MXenes Are Conductive but Not Plasmonic in the Optical Domain

Hui, Fang, Zahra , Fakhraai, Zhenyao, Fang, Anupma, Thakur, Babak, Anasori, Andrew M. , Rappe, Vahid, Rad, Nithin, Chandran B S, Paweł, Michałowski, Masoud, Soroush
{"title":"Why Ti3C2Tx MXenes Are Conductive but Not Plasmonic in the Optical Domain","authors":"Hui, Fang, Zahra , Fakhraai, Zhenyao, Fang, Anupma, Thakur, Babak, Anasori, Andrew M. , Rappe, Vahid, Rad, Nithin, Chandran B S, Paweł, Michałowski, Masoud, Soroush","doi":"10.26434/chemrxiv-2024-rpf17-v2","DOIUrl":null,"url":null,"abstract":"MXenes have shown great potential in electronic and optoelectronic applications. However, optical properties of these highly conductive two-dimentional materials are not fully understood. The near-infrared (IR) optical peak (∼1.5\neV) in Ti3C2Tx with mixed terminations (T: O, OH, F, Cl) has sparked debates, attributing the peak to a localized surface plasmon resonance (LSPR) or an inter-band transition (IBT). Here, density functional theory calculations conclusively assign the peak to an IBT that exists only in Ti3C2O2. Both experiments and calculations corroborate that this peak is absent in Ti3C2Cl2. Moreover, calculations predict SPR in the mid-IR (∼0.5 eV, outside optical domain) for Ti3C2O2, but not for Ti3C2Cl2. Our results reconcile conflicting interpretations of the debate, allowing for optimized use of Ti3C2Tx MXenes, by leveraging their IBT optical signature, which is size-independent and distinct from the size-dependent plasmonic effect.","PeriodicalId":9813,"journal":{"name":"ChemRxiv","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26434/chemrxiv-2024-rpf17-v2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

MXenes have shown great potential in electronic and optoelectronic applications. However, optical properties of these highly conductive two-dimentional materials are not fully understood. The near-infrared (IR) optical peak (∼1.5 eV) in Ti3C2Tx with mixed terminations (T: O, OH, F, Cl) has sparked debates, attributing the peak to a localized surface plasmon resonance (LSPR) or an inter-band transition (IBT). Here, density functional theory calculations conclusively assign the peak to an IBT that exists only in Ti3C2O2. Both experiments and calculations corroborate that this peak is absent in Ti3C2Cl2. Moreover, calculations predict SPR in the mid-IR (∼0.5 eV, outside optical domain) for Ti3C2O2, but not for Ti3C2Cl2. Our results reconcile conflicting interpretations of the debate, allowing for optimized use of Ti3C2Tx MXenes, by leveraging their IBT optical signature, which is size-independent and distinct from the size-dependent plasmonic effect.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信