Integrated modeling framework for the interactions of plastic deformation, magnetic fields, and electrical circuits: Theory and applications to physics-informed real-time material monitoring
Young-Dae Shim, Changhyeon Kim, Jihun Kim, Dae-Hyun Yoon, WooHo Yang, Eun-Ho Lee
{"title":"Integrated modeling framework for the interactions of plastic deformation, magnetic fields, and electrical circuits: Theory and applications to physics-informed real-time material monitoring","authors":"Young-Dae Shim, Changhyeon Kim, Jihun Kim, Dae-Hyun Yoon, WooHo Yang, Eun-Ho Lee","doi":"10.1016/j.ijplas.2024.104212","DOIUrl":null,"url":null,"abstract":"This study aims to develop a thermodynamic modeling framework for the electromagnetic-plastic deformation response coupled with circuit analysis. To accomplish this objective, we derived the thermodynamic balance laws for materials exposed to electromagnetic fields while undergoing plastic deformation. The balance laws serve as the foundation for refining the connection between the plastic deformation and electrical conductivity of materials. This study also modeled the relationship between dislocation density and Matthiessen's rule. The constitutive equations were subsequently implemented into a crystal plasticity model, thereby calibrating and validating the model. The derived modeling framework considers the 1<sup>st</sup> and 2<sup>nd</sup> laws of thermodynamics. The model was then transformed into a circuit model for a monitoring system by formulating equations to analyze the changes in material impedance resulting from the evolution of plastic deformation. This lays the groundwork for creating a monitoring system featuring a real-time prediction algorithm designed to assess material properties during manufacturing processes, thereby enhancing quality control and productivity. This monitoring system is used to monitor all materials in production lines of factories, where full-field measurement methods have limitations. Numerical simulations and experiments were conducted to validate the model and system performance. The results of these validation tests demonstrate that the model not only accurately predicts the relationship between electromagnetic fields and plastic deformation at the material level but also provides practical applicability within the realm of circuit theory, thus making it suitable for real-world system implementation.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"18 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2024.104212","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to develop a thermodynamic modeling framework for the electromagnetic-plastic deformation response coupled with circuit analysis. To accomplish this objective, we derived the thermodynamic balance laws for materials exposed to electromagnetic fields while undergoing plastic deformation. The balance laws serve as the foundation for refining the connection between the plastic deformation and electrical conductivity of materials. This study also modeled the relationship between dislocation density and Matthiessen's rule. The constitutive equations were subsequently implemented into a crystal plasticity model, thereby calibrating and validating the model. The derived modeling framework considers the 1st and 2nd laws of thermodynamics. The model was then transformed into a circuit model for a monitoring system by formulating equations to analyze the changes in material impedance resulting from the evolution of plastic deformation. This lays the groundwork for creating a monitoring system featuring a real-time prediction algorithm designed to assess material properties during manufacturing processes, thereby enhancing quality control and productivity. This monitoring system is used to monitor all materials in production lines of factories, where full-field measurement methods have limitations. Numerical simulations and experiments were conducted to validate the model and system performance. The results of these validation tests demonstrate that the model not only accurately predicts the relationship between electromagnetic fields and plastic deformation at the material level but also provides practical applicability within the realm of circuit theory, thus making it suitable for real-world system implementation.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.