Ricardo F. Lancelotti, Shih-Yi Chuang, Edgar D. Zanotto, Sabyasachi Sen
{"title":"Effect of physical aging on ionic conductivity of network oxide glasses","authors":"Ricardo F. Lancelotti, Shih-Yi Chuang, Edgar D. Zanotto, Sabyasachi Sen","doi":"10.1016/j.actamat.2024.120658","DOIUrl":null,"url":null,"abstract":"This study investigates the effect of α-relaxation induced by physical aging due to a down-jump in fictive temperature (<em>T<sub>f</sub></em>) on the alkali ion hopping dynamics and the resulting ionic conductivity in different network oxide glass-forming systems. Electrochemical impedance spectroscopy, differential scanning calorimetry, and density measurements were used to analyze this effect. Results from <em>ex situ</em> and <em>in situ</em> aging experiments show excellent agreement and demonstrate that α-relaxation during aging significantly reduces the ionic conductivity of the glass as its density increases and <em>T<sub>f</sub></em> decreases. In single-alkali Li disilicate and Li metaphosphate glasses, the migration enthalpy <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2386.2 1047.3\" width=\"5.542ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-48\"></use></g><g is=\"true\" transform=\"translate(831,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> of ionic conduction remains constant after aging, while the migration entropy <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2168.2 1047.3\" width=\"5.036ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-53\"></use></g><g is=\"true\" transform=\"translate(613,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> decreases, leading to a corresponding reduction in the hopping rate of mobile alkali ions. In contrast, in the mixed-modifier Na-Mg metaphosphate glass, both <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2386.2 1047.3\" width=\"5.542ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-48\"></use></g><g is=\"true\" transform=\"translate(831,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">H</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> and <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">&#x394;</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.432ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -796.9 2168.2 1047.3\" width=\"5.036ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-394\"></use></g></g><g is=\"true\" transform=\"translate(833,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-53\"></use></g><g is=\"true\" transform=\"translate(613,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-6D\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mstyle is=\"true\" mathvariant=\"normal\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mstyle mathvariant=\"normal\" is=\"true\"><mi is=\"true\">Δ</mi></mstyle><msub is=\"true\"><mi is=\"true\">S</mi><mi is=\"true\">m</mi></msub></mrow></math></script></span> increase after aging. This behavior is potentially explained by a spatial redistribution of Na and Mg cations likely occurring alongside α-relaxation during aging. The findings suggest that significant increases in the ionic conductivity of a glass, even by orders of magnitude, can be achieved by raising its <em>T<sub>f</sub></em>. This implies that fast-quenched glass products, such as thin films or fibers, may have novel applications as sensors and solid electrolytes.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"29 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2024.120658","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the effect of α-relaxation induced by physical aging due to a down-jump in fictive temperature (Tf) on the alkali ion hopping dynamics and the resulting ionic conductivity in different network oxide glass-forming systems. Electrochemical impedance spectroscopy, differential scanning calorimetry, and density measurements were used to analyze this effect. Results from ex situ and in situ aging experiments show excellent agreement and demonstrate that α-relaxation during aging significantly reduces the ionic conductivity of the glass as its density increases and Tf decreases. In single-alkali Li disilicate and Li metaphosphate glasses, the migration enthalpy of ionic conduction remains constant after aging, while the migration entropy decreases, leading to a corresponding reduction in the hopping rate of mobile alkali ions. In contrast, in the mixed-modifier Na-Mg metaphosphate glass, both and increase after aging. This behavior is potentially explained by a spatial redistribution of Na and Mg cations likely occurring alongside α-relaxation during aging. The findings suggest that significant increases in the ionic conductivity of a glass, even by orders of magnitude, can be achieved by raising its Tf. This implies that fast-quenched glass products, such as thin films or fibers, may have novel applications as sensors and solid electrolytes.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.