{"title":"Unwrapping error and fading signal correction on multi-looked InSAR data","authors":"Zhangfeng Ma, Nanxin Wang, Yingbao Yang, Yosuke Aoki, Shengji Wei","doi":"10.1016/j.isprsjprs.2024.12.006","DOIUrl":null,"url":null,"abstract":"Multi-looking, aimed at reducing data size and improving the signal-to-noise ratio, is indispensable for large-scale InSAR data processing. However, the resulting “Fading Signal” caused by multi-looking breaks the phase consistency among triplet interferograms and introduces bias into the estimated displacements. This inconsistency challenges the assumption that only unwrapping errors are involved in triplet phase closure. Therefore, untangling phase unwrapping errors and fading signals from triplet phase closure is critical to achieving more precise InSAR measurements. To address this challenge, we propose a new method that mitigates phase unwrapping errors and fading signals. This new method consists of two key steps. The first step is triplet phase closure-based stacking, which allows for the direct estimation of fading signals in each interferogram. The second step is Basis Pursuit Denoising-based unwrapping error correction, which transforms unwrapping error correction into sparse signal recovery. Through these two procedures, the new method can be seamlessly integrated into the traditional InSAR workflow. Additionally, the estimated fading signal can be directly used to derive soil moisture as a by-product of our method. Experimental results on the San Francisco Bay area demonstrate that the new method reduces velocity estimation errors by approximately 9 %–19 %, effectively addressing phase unwrapping errors and fading signals. This performance outperforms both ILP and Lasso methods, which only account for unwrapping errors in the triplet closure. Additionally, the derived by-product, soil moisture, shows strong consistency with most external soil moisture products.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"12 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2024.12.006","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-looking, aimed at reducing data size and improving the signal-to-noise ratio, is indispensable for large-scale InSAR data processing. However, the resulting “Fading Signal” caused by multi-looking breaks the phase consistency among triplet interferograms and introduces bias into the estimated displacements. This inconsistency challenges the assumption that only unwrapping errors are involved in triplet phase closure. Therefore, untangling phase unwrapping errors and fading signals from triplet phase closure is critical to achieving more precise InSAR measurements. To address this challenge, we propose a new method that mitigates phase unwrapping errors and fading signals. This new method consists of two key steps. The first step is triplet phase closure-based stacking, which allows for the direct estimation of fading signals in each interferogram. The second step is Basis Pursuit Denoising-based unwrapping error correction, which transforms unwrapping error correction into sparse signal recovery. Through these two procedures, the new method can be seamlessly integrated into the traditional InSAR workflow. Additionally, the estimated fading signal can be directly used to derive soil moisture as a by-product of our method. Experimental results on the San Francisco Bay area demonstrate that the new method reduces velocity estimation errors by approximately 9 %–19 %, effectively addressing phase unwrapping errors and fading signals. This performance outperforms both ILP and Lasso methods, which only account for unwrapping errors in the triplet closure. Additionally, the derived by-product, soil moisture, shows strong consistency with most external soil moisture products.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.