Unwrapping error and fading signal correction on multi-looked InSAR data

IF 10.6 1区 地球科学 Q1 GEOGRAPHY, PHYSICAL
Zhangfeng Ma, Nanxin Wang, Yingbao Yang, Yosuke Aoki, Shengji Wei
{"title":"Unwrapping error and fading signal correction on multi-looked InSAR data","authors":"Zhangfeng Ma, Nanxin Wang, Yingbao Yang, Yosuke Aoki, Shengji Wei","doi":"10.1016/j.isprsjprs.2024.12.006","DOIUrl":null,"url":null,"abstract":"Multi-looking, aimed at reducing data size and improving the signal-to-noise ratio, is indispensable for large-scale InSAR data processing. However, the resulting “Fading Signal” caused by multi-looking breaks the phase consistency among triplet interferograms and introduces bias into the estimated displacements. This inconsistency challenges the assumption that only unwrapping errors are involved in triplet phase closure. Therefore, untangling phase unwrapping errors and fading signals from triplet phase closure is critical to achieving more precise InSAR measurements. To address this challenge, we propose a new method that mitigates phase unwrapping errors and fading signals. This new method consists of two key steps. The first step is triplet phase closure-based stacking, which allows for the direct estimation of fading signals in each interferogram. The second step is Basis Pursuit Denoising-based unwrapping error correction, which transforms unwrapping error correction into sparse signal recovery. Through these two procedures, the new method can be seamlessly integrated into the traditional InSAR workflow. Additionally, the estimated fading signal can be directly used to derive soil moisture as a by-product of our method. Experimental results on the San Francisco Bay area demonstrate that the new method reduces velocity estimation errors by approximately 9 %–19 %, effectively addressing phase unwrapping errors and fading signals. This performance outperforms both ILP and Lasso methods, which only account for unwrapping errors in the triplet closure. Additionally, the derived by-product, soil moisture, shows strong consistency with most external soil moisture products.","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"12 1","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.isprsjprs.2024.12.006","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-looking, aimed at reducing data size and improving the signal-to-noise ratio, is indispensable for large-scale InSAR data processing. However, the resulting “Fading Signal” caused by multi-looking breaks the phase consistency among triplet interferograms and introduces bias into the estimated displacements. This inconsistency challenges the assumption that only unwrapping errors are involved in triplet phase closure. Therefore, untangling phase unwrapping errors and fading signals from triplet phase closure is critical to achieving more precise InSAR measurements. To address this challenge, we propose a new method that mitigates phase unwrapping errors and fading signals. This new method consists of two key steps. The first step is triplet phase closure-based stacking, which allows for the direct estimation of fading signals in each interferogram. The second step is Basis Pursuit Denoising-based unwrapping error correction, which transforms unwrapping error correction into sparse signal recovery. Through these two procedures, the new method can be seamlessly integrated into the traditional InSAR workflow. Additionally, the estimated fading signal can be directly used to derive soil moisture as a by-product of our method. Experimental results on the San Francisco Bay area demonstrate that the new method reduces velocity estimation errors by approximately 9 %–19 %, effectively addressing phase unwrapping errors and fading signals. This performance outperforms both ILP and Lasso methods, which only account for unwrapping errors in the triplet closure. Additionally, the derived by-product, soil moisture, shows strong consistency with most external soil moisture products.
求助全文
约1分钟内获得全文 求助全文
来源期刊
ISPRS Journal of Photogrammetry and Remote Sensing
ISPRS Journal of Photogrammetry and Remote Sensing 工程技术-成像科学与照相技术
CiteScore
21.00
自引率
6.30%
发文量
273
审稿时长
40 days
期刊介绍: The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive. P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields. In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信