Single-View Fluoroscopic X-Ray Pose Estimation: A Comparison of Alternative Loss Functions and Volumetric Scene Representations.

Chaochao Zhou, Syed Hasib Akhter Faruqui, Dayeong An, Abhinav Patel, Ramez N Abdalla, Michael C Hurley, Ali Shaibani, Matthew B Potts, Babak S Jahromi, Sameer A Ansari, Donald R Cantrell
{"title":"Single-View Fluoroscopic X-Ray Pose Estimation: A Comparison of Alternative Loss Functions and Volumetric Scene Representations.","authors":"Chaochao Zhou, Syed Hasib Akhter Faruqui, Dayeong An, Abhinav Patel, Ramez N Abdalla, Michael C Hurley, Ali Shaibani, Matthew B Potts, Babak S Jahromi, Sameer A Ansari, Donald R Cantrell","doi":"10.1007/s10278-024-01354-w","DOIUrl":null,"url":null,"abstract":"<p><p>Many tasks performed in image-guided procedures can be cast as pose estimation problems, where specific projections are chosen to reach a target in 3D space. In this study, we construct a framework for fluoroscopic pose estimation and compare alternative loss functions and volumetric scene representations. We first develop a differentiable projection (DiffProj) algorithm for the efficient computation of Digitally Reconstructed Radiographs (DRRs) from either Cone-Beam Computerized Tomography (CBCT) or neural scene representations. We introduce two innovative neural scene representations, Neural Tuned Tomography (NeTT) and masked Neural Radiance Fields (mNeRF). Pose estimation is then performed within the framework by iterative gradient descent using loss functions that quantify the image discrepancy of the synthesized DRR with respect to the ground-truth, target fluoroscopic X-ray image. We compared alternative loss functions and volumetric scene representations for pose estimation using a dataset consisting of 50 cranial tomographic X-ray sequences. We find that Mutual Information significantly outperforms alternative loss functions for pose estimation, avoiding entrapment in local optima. The alternative discrete (CBCT) and neural (NeTT and mNeRF) volumetric scene representations yield comparable performance (3D angle errors, mean ≤ 3.2° and 90% quantile ≤ 3.4°); however, the neural scene representations incur a considerable computational expense to train.</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-024-01354-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many tasks performed in image-guided procedures can be cast as pose estimation problems, where specific projections are chosen to reach a target in 3D space. In this study, we construct a framework for fluoroscopic pose estimation and compare alternative loss functions and volumetric scene representations. We first develop a differentiable projection (DiffProj) algorithm for the efficient computation of Digitally Reconstructed Radiographs (DRRs) from either Cone-Beam Computerized Tomography (CBCT) or neural scene representations. We introduce two innovative neural scene representations, Neural Tuned Tomography (NeTT) and masked Neural Radiance Fields (mNeRF). Pose estimation is then performed within the framework by iterative gradient descent using loss functions that quantify the image discrepancy of the synthesized DRR with respect to the ground-truth, target fluoroscopic X-ray image. We compared alternative loss functions and volumetric scene representations for pose estimation using a dataset consisting of 50 cranial tomographic X-ray sequences. We find that Mutual Information significantly outperforms alternative loss functions for pose estimation, avoiding entrapment in local optima. The alternative discrete (CBCT) and neural (NeTT and mNeRF) volumetric scene representations yield comparable performance (3D angle errors, mean ≤ 3.2° and 90% quantile ≤ 3.4°); however, the neural scene representations incur a considerable computational expense to train.

单视角透视 X 光姿势估计:替代损失函数和体积场景表示法的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信