Satvik Tripathi , Jay Patel , Liam Mutter , Felix J. Dorfner , Christopher P. Bridge , Dania Daye
{"title":"Large language models as an academic resource for radiologists stepping into artificial intelligence research","authors":"Satvik Tripathi , Jay Patel , Liam Mutter , Felix J. Dorfner , Christopher P. Bridge , Dania Daye","doi":"10.1067/j.cpradiol.2024.12.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Radiologists increasingly use artificial intelligence (AI) to enhance diagnostic accuracy and optimize workflows. However, many lack the technical skills to effectively apply machine learning (ML) and deep learning (DL) algorithms, limiting the accessibility of these methods to radiology researchers who could otherwise benefit from them. Large language models (LLMs), such as GPT-4o, may serve as virtual advisors, offering tailored algorithm recommendations for specific research needs. This study evaluates GPT-4o's effectiveness as a recommender system to enhance radiologists' understanding and implementation of AI in research.</div></div><div><h3>Intervention</h3><div>GPT-4o was used to recommend ML and DL algorithms based on specific details provided by researchers, including dataset characteristics, modality types, data sizes, and research objectives. The model acted as a virtual advisor, guiding researchers in selecting the most appropriate models for their studies.</div></div><div><h3>Methods</h3><div>The study systematically evaluated GPT-4o's recommendations for clarity, task alignment, model diversity, and baseline selection. Responses were graded to assess the model's ability to meet the needs of radiology researchers.</div></div><div><h3>Results</h3><div>GPT-4o effectively recommended appropriate ML and DL algorithms for various radiology tasks, including segmentation, classification, and regression in medical imaging. The model suggested a diverse range of established and innovative algorithms, such as U-Net, Random Forest, Attention U-Net, and EfficientNet, aligning well with accepted practices.</div></div><div><h3>Conclusion</h3><div>GPT-4o shows promise as a valuable tool for radiologists and early career researchers by providing clear and relevant AI and ML algorithm recommendations. Its ability to bridge the knowledge gap in AI implementation could democratize access to advanced technologies, fostering innovation and improving radiology research quality. Further studies should explore integrating LLMs into routine workflows and their role in ongoing professional development.</div></div>","PeriodicalId":51617,"journal":{"name":"Current Problems in Diagnostic Radiology","volume":"54 3","pages":"Pages 342-348"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Problems in Diagnostic Radiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0363018824002329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Radiologists increasingly use artificial intelligence (AI) to enhance diagnostic accuracy and optimize workflows. However, many lack the technical skills to effectively apply machine learning (ML) and deep learning (DL) algorithms, limiting the accessibility of these methods to radiology researchers who could otherwise benefit from them. Large language models (LLMs), such as GPT-4o, may serve as virtual advisors, offering tailored algorithm recommendations for specific research needs. This study evaluates GPT-4o's effectiveness as a recommender system to enhance radiologists' understanding and implementation of AI in research.
Intervention
GPT-4o was used to recommend ML and DL algorithms based on specific details provided by researchers, including dataset characteristics, modality types, data sizes, and research objectives. The model acted as a virtual advisor, guiding researchers in selecting the most appropriate models for their studies.
Methods
The study systematically evaluated GPT-4o's recommendations for clarity, task alignment, model diversity, and baseline selection. Responses were graded to assess the model's ability to meet the needs of radiology researchers.
Results
GPT-4o effectively recommended appropriate ML and DL algorithms for various radiology tasks, including segmentation, classification, and regression in medical imaging. The model suggested a diverse range of established and innovative algorithms, such as U-Net, Random Forest, Attention U-Net, and EfficientNet, aligning well with accepted practices.
Conclusion
GPT-4o shows promise as a valuable tool for radiologists and early career researchers by providing clear and relevant AI and ML algorithm recommendations. Its ability to bridge the knowledge gap in AI implementation could democratize access to advanced technologies, fostering innovation and improving radiology research quality. Further studies should explore integrating LLMs into routine workflows and their role in ongoing professional development.
期刊介绍:
Current Problems in Diagnostic Radiology covers important and controversial topics in radiology. Each issue presents important viewpoints from leading radiologists. High-quality reproductions of radiographs, CT scans, MR images, and sonograms clearly depict what is being described in each article. Also included are valuable updates relevant to other areas of practice, such as medical-legal issues or archiving systems. With new multi-topic format and image-intensive style, Current Problems in Diagnostic Radiology offers an outstanding, time-saving investigation into current topics most relevant to radiologists.