Nazila Ameli, Tahereh Firoozi, Monica Gibson, Hollis Lai
{"title":"Classification of periodontitis stage and grade using natural language processing techniques.","authors":"Nazila Ameli, Tahereh Firoozi, Monica Gibson, Hollis Lai","doi":"10.1371/journal.pdig.0000692","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a complex and microbiome-related inflammatory condition impacting dental supporting tissues. Emphasizing the potential of Clinical Decision Support Systems (CDSS), this study aims to facilitate early diagnosis of periodontitis by extracting patients' information collected as dental charts and notes. We developed a CDSS to predict the stage and grade of periodontitis using natural language processing (NLP) techniques including bidirectional encoder representation for transformers (BERT). We compared the performance of BERT with that of a baseline feature-engineered model. A secondary data analysis was conducted using 309 anonymized patient periodontal charts and corresponding clinician's notes obtained from the university periodontal clinic. After data preprocessing, we added a classification layer on top of the pre-trained BERT model to classify the clinical notes into their corresponding stage and grades. Then, we fine-tuned the pre-trained BERT model on 70% of our data. The performance of the model was evaluated on 32 unseen new patients' clinical notes. The results were compared with the output of a baseline feature-engineered algorithm coupled with MLP techniques to classify the stage and grade of periodontitis. Our proposed BERT model predicted the patients' stage and grade with 77% and 75% accuracy, respectively. MLP model showed that the accuracy of correct classification of stage and grade of the periodontitis on a set of 32 new unseen data was 59.4% and 62.5%, respectively. The BERT model could predict the periodontitis stage and grade on the same new dataset with higher accuracy (66% and 72%, respectively). The utilization of BERT in this context represents a groundbreaking application in dentistry, particularly in CDSS. Our BERT model outperformed baseline models, even with reduced information, promising efficient review of patient notes. This integration of advanced NLP techniques with CDSS frameworks holds potential for timely interventions, preventing complications and reducing healthcare costs.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000692"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is a complex and microbiome-related inflammatory condition impacting dental supporting tissues. Emphasizing the potential of Clinical Decision Support Systems (CDSS), this study aims to facilitate early diagnosis of periodontitis by extracting patients' information collected as dental charts and notes. We developed a CDSS to predict the stage and grade of periodontitis using natural language processing (NLP) techniques including bidirectional encoder representation for transformers (BERT). We compared the performance of BERT with that of a baseline feature-engineered model. A secondary data analysis was conducted using 309 anonymized patient periodontal charts and corresponding clinician's notes obtained from the university periodontal clinic. After data preprocessing, we added a classification layer on top of the pre-trained BERT model to classify the clinical notes into their corresponding stage and grades. Then, we fine-tuned the pre-trained BERT model on 70% of our data. The performance of the model was evaluated on 32 unseen new patients' clinical notes. The results were compared with the output of a baseline feature-engineered algorithm coupled with MLP techniques to classify the stage and grade of periodontitis. Our proposed BERT model predicted the patients' stage and grade with 77% and 75% accuracy, respectively. MLP model showed that the accuracy of correct classification of stage and grade of the periodontitis on a set of 32 new unseen data was 59.4% and 62.5%, respectively. The BERT model could predict the periodontitis stage and grade on the same new dataset with higher accuracy (66% and 72%, respectively). The utilization of BERT in this context represents a groundbreaking application in dentistry, particularly in CDSS. Our BERT model outperformed baseline models, even with reduced information, promising efficient review of patient notes. This integration of advanced NLP techniques with CDSS frameworks holds potential for timely interventions, preventing complications and reducing healthcare costs.