Classification of periodontitis stage and grade using natural language processing techniques.

PLOS digital health Pub Date : 2024-12-13 eCollection Date: 2024-12-01 DOI:10.1371/journal.pdig.0000692
Nazila Ameli, Tahereh Firoozi, Monica Gibson, Hollis Lai
{"title":"Classification of periodontitis stage and grade using natural language processing techniques.","authors":"Nazila Ameli, Tahereh Firoozi, Monica Gibson, Hollis Lai","doi":"10.1371/journal.pdig.0000692","DOIUrl":null,"url":null,"abstract":"<p><p>Periodontitis is a complex and microbiome-related inflammatory condition impacting dental supporting tissues. Emphasizing the potential of Clinical Decision Support Systems (CDSS), this study aims to facilitate early diagnosis of periodontitis by extracting patients' information collected as dental charts and notes. We developed a CDSS to predict the stage and grade of periodontitis using natural language processing (NLP) techniques including bidirectional encoder representation for transformers (BERT). We compared the performance of BERT with that of a baseline feature-engineered model. A secondary data analysis was conducted using 309 anonymized patient periodontal charts and corresponding clinician's notes obtained from the university periodontal clinic. After data preprocessing, we added a classification layer on top of the pre-trained BERT model to classify the clinical notes into their corresponding stage and grades. Then, we fine-tuned the pre-trained BERT model on 70% of our data. The performance of the model was evaluated on 32 unseen new patients' clinical notes. The results were compared with the output of a baseline feature-engineered algorithm coupled with MLP techniques to classify the stage and grade of periodontitis. Our proposed BERT model predicted the patients' stage and grade with 77% and 75% accuracy, respectively. MLP model showed that the accuracy of correct classification of stage and grade of the periodontitis on a set of 32 new unseen data was 59.4% and 62.5%, respectively. The BERT model could predict the periodontitis stage and grade on the same new dataset with higher accuracy (66% and 72%, respectively). The utilization of BERT in this context represents a groundbreaking application in dentistry, particularly in CDSS. Our BERT model outperformed baseline models, even with reduced information, promising efficient review of patient notes. This integration of advanced NLP techniques with CDSS frameworks holds potential for timely interventions, preventing complications and reducing healthcare costs.</p>","PeriodicalId":74465,"journal":{"name":"PLOS digital health","volume":"3 12","pages":"e0000692"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11642968/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLOS digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1371/journal.pdig.0000692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Periodontitis is a complex and microbiome-related inflammatory condition impacting dental supporting tissues. Emphasizing the potential of Clinical Decision Support Systems (CDSS), this study aims to facilitate early diagnosis of periodontitis by extracting patients' information collected as dental charts and notes. We developed a CDSS to predict the stage and grade of periodontitis using natural language processing (NLP) techniques including bidirectional encoder representation for transformers (BERT). We compared the performance of BERT with that of a baseline feature-engineered model. A secondary data analysis was conducted using 309 anonymized patient periodontal charts and corresponding clinician's notes obtained from the university periodontal clinic. After data preprocessing, we added a classification layer on top of the pre-trained BERT model to classify the clinical notes into their corresponding stage and grades. Then, we fine-tuned the pre-trained BERT model on 70% of our data. The performance of the model was evaluated on 32 unseen new patients' clinical notes. The results were compared with the output of a baseline feature-engineered algorithm coupled with MLP techniques to classify the stage and grade of periodontitis. Our proposed BERT model predicted the patients' stage and grade with 77% and 75% accuracy, respectively. MLP model showed that the accuracy of correct classification of stage and grade of the periodontitis on a set of 32 new unseen data was 59.4% and 62.5%, respectively. The BERT model could predict the periodontitis stage and grade on the same new dataset with higher accuracy (66% and 72%, respectively). The utilization of BERT in this context represents a groundbreaking application in dentistry, particularly in CDSS. Our BERT model outperformed baseline models, even with reduced information, promising efficient review of patient notes. This integration of advanced NLP techniques with CDSS frameworks holds potential for timely interventions, preventing complications and reducing healthcare costs.

利用自然语言处理技术对牙周炎阶段和等级进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信