Comparative study of a microdosimetric biological weighting function for RBE10modeling in particle therapy with a solid state SOI microdosimeter.

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL
Vladimir A Pan, Alessio Parisi, David Bolst, Jesse Williams, Taku Inaniwa, Michael Jackson, Verity Ahren, Anatoly B Rosenfeld, Linh T Tran
{"title":"Comparative study of a microdosimetric biological weighting function for RBE<sub>10</sub>modeling in particle therapy with a solid state SOI microdosimeter.","authors":"Vladimir A Pan, Alessio Parisi, David Bolst, Jesse Williams, Taku Inaniwa, Michael Jackson, Verity Ahren, Anatoly B Rosenfeld, Linh T Tran","doi":"10.1088/1361-6560/ad9f1c","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The recently developed V79-RBE<sub>10</sub>biological weighting function (BWF) model is a simple and robust tool for a fast relative biological effectiveness (RBE) assessment for comparing different exposure conditions in particle therapy. In this study, the RBE<sub>10</sub>derived by this model (through the Particle and Heavy Ion Transport code System (PHITS) simulated d(y) spectra) is compared with values of RBE<sub>10</sub>using experimentally derived d(y) spectra from a silicon-on-insulator (SOI) microdosimeter. &#xD; &#xD;Approach: Experimentally measured d(y) spectra are used to calculate an RBE<sub>10</sub>value utilizing the V79-RBE<sub>10</sub>BWF model as well as the modified microdosimetric kinetic model (MKM) to produce an RBE<sub>10</sub>-vs-y<sub>D</sub>trend for a wide range of ions. In addition, a beamline specific PHITS simulation was conducted which replicated the exact experimental conditions that were used with the SOI microdosimeter at the Heavy Ion Medical Accelerator in Chiba (HIMAC) biological beamline with<sup>12</sup>C ions. &#xD; &#xD;Main Results: The RBE<sub>10</sub>-vs-y<sub>D</sub>trend for<sup>1</sup>H,<sup>4</sup>He,<sup>7</sup>Li,<sup>12</sup>C,<sup>14</sup>N,<sup>16</sup>O,<sup>20</sup>Ne,<sup>28</sup>Si,<sup>56</sup>Fe, and<sup>124</sup>Xe ions is examined with good agreement found between the SOI microdosimeter derived RBE<sub>10</sub>values with the V79-RBE<sub>10</sub>BWF model and MKM, as well as the PHITS simulations for<sup>1</sup>H,<sup>4</sup>He,<sup>7</sup>Li,<sup>12</sup>C,<sup>16</sup>O and<sup>56</sup>Fe ions while some discrepancies were seen for<sup>14</sup>N,<sup>20</sup>Ne,<sup>28</sup>Si ions. Deviations have been attributed to the difference in the derivation of the d(y) spectra based on the different methods utilized. Good agreement was found between y<sub>D</sub>values and an over estimation was observed for RBE<sub>10</sub>values for the beamline specific simulation of the<sup>12</sup>C ion beam. &#xD; &#xD;Significance: Overall, this study shows that the SOI microdosimeter is a valuable tool that can be utilized for quick and accurate experimental derivation of the d(y) spectra, which can then be convoluted with the weighting function of the V79-RBE<sub>10</sub>BWF model to derive RBE<sub>10</sub>. The SOI microdosimeter is able to derive experimental values of y<sub>D</sub>and RBE<sub>10</sub>for various ions in any irradiation condition utilizing other radiobiological models.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/ad9f1c","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The recently developed V79-RBE10biological weighting function (BWF) model is a simple and robust tool for a fast relative biological effectiveness (RBE) assessment for comparing different exposure conditions in particle therapy. In this study, the RBE10derived by this model (through the Particle and Heavy Ion Transport code System (PHITS) simulated d(y) spectra) is compared with values of RBE10using experimentally derived d(y) spectra from a silicon-on-insulator (SOI) microdosimeter. Approach: Experimentally measured d(y) spectra are used to calculate an RBE10value utilizing the V79-RBE10BWF model as well as the modified microdosimetric kinetic model (MKM) to produce an RBE10-vs-yDtrend for a wide range of ions. In addition, a beamline specific PHITS simulation was conducted which replicated the exact experimental conditions that were used with the SOI microdosimeter at the Heavy Ion Medical Accelerator in Chiba (HIMAC) biological beamline with12C ions. Main Results: The RBE10-vs-yDtrend for1H,4He,7Li,12C,14N,16O,20Ne,28Si,56Fe, and124Xe ions is examined with good agreement found between the SOI microdosimeter derived RBE10values with the V79-RBE10BWF model and MKM, as well as the PHITS simulations for1H,4He,7Li,12C,16O and56Fe ions while some discrepancies were seen for14N,20Ne,28Si ions. Deviations have been attributed to the difference in the derivation of the d(y) spectra based on the different methods utilized. Good agreement was found between yDvalues and an over estimation was observed for RBE10values for the beamline specific simulation of the12C ion beam. Significance: Overall, this study shows that the SOI microdosimeter is a valuable tool that can be utilized for quick and accurate experimental derivation of the d(y) spectra, which can then be convoluted with the weighting function of the V79-RBE10BWF model to derive RBE10. The SOI microdosimeter is able to derive experimental values of yDand RBE10for various ions in any irradiation condition utilizing other radiobiological models.

利用固态 SOI 微剂量计对用于粒子治疗中 RBE10 建模的微剂量测定生物加权函数进行比较研究。
目的:最近开发的 V79-RBE10 生物加权函数(BWF)模型是一种简单而强大的工具,可用于快速评估相对生物效应(RBE),以比较粒子治疗中的不同暴露条件。在本研究中,我们将该模型(通过粒子与重离子输运代码系统 (PHITS) 模拟 d(y) 光谱)得出的 RBE10 与通过硅绝缘体 (SOI) 微剂量计实验得出的 d(y) 光谱 RBE10 值进行了比较:实验测量的 d(y) 光谱用于计算 RBE10 值,利用 V79-RBE10BWF 模型和改进的微剂量测定动力学模型 (MKM),为各种离子生成 RBE10-vs-yD 趋势。此外,还进行了针对光束线的 PHITS 模拟,该模拟完全复制了千叶重离子医学加速器(HIMAC)生物光束线 SOI 微测辐射计使用 12C 离子时的实验条件:研究了 1H、4He、7Li、12C、14N、16O、20Ne、28Si、56Fe 和 124Xe 离子的 RBE10-vs-yDtrend,发现 SOI 微探针得出的 RBE10 值与 V79-RBE10BWF 模型和 MKM、以及 PHITS 模拟得出的 1H、4He、7Li、12C、16O 和 56Fe 离子的 RBE10 值之间具有良好的一致性,而在 14N、20Ne、28Si 离子上则存在一些差异。出现偏差的原因是基于不同方法得出的 d(y) 光谱不同。在对 12C 离子束进行光束线模拟时,发现 yD 值之间的一致性很好,而 RBE10 值则估计过高:总之,这项研究表明,SOI 微透度计是一种有价值的工具,可用于快速、准确地实验推导 d(y) 光谱,然后用 V79-RBE10BWF 模型的加权函数卷积推导 RBE10。SOI 微剂量计能够利用其他放射生物学模型,在任何辐照条件下得出各种离子的 yD 和 RBE10 的实验值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信