L Monti, M Bellini, M Alberti, E Piane, T Casseri, G Sadotti, S Marcia, J A Hirsc, F Ginanneschi, A Rossi
{"title":"Longitudinal DTI analysis of microstructural changes in lumbar nerve roots following Interspinous process device placement.","authors":"L Monti, M Bellini, M Alberti, E Piane, T Casseri, G Sadotti, S Marcia, J A Hirsc, F Ginanneschi, A Rossi","doi":"10.1016/j.mri.2024.110306","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion tensor imaging (DTI) and its parameters such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) are increasingly being used to assess peripheral nerve integrity alongside nerve conduction studies. This pilot study aims to compare DTI values of lumbar spinal nerve roots before (T0) and after (T1) treatment with an interspinous process device (IPD). Seven patients (5 females, 2 males; mean age: 68) suffering from neurogenic claudication and lumbar spinal canal and foraminal stenosis were evaluated. Visual Analog Scale (VAS) for perceived pain, Oswestry Disability Index (ODI), and DTI parameters were assessed between T0 and T1. No significant difference in FA was found in treated roots, while MD (p = 0.0015), RD (p = 0.0032), and AD (p = 0.0221) were significantly altered. At untreated levels, all DTI parameters showed highly significant differences (p < 0.0001) between T0 and T1. In treated roots, FA values significantly increased in the intraforaminal segment(p = 0.0229), while MD(p = 0.0124), AD(p = 0.0128), and RD (p = 0.0143) values decreased in the pre-foraminal segment. In untreated roots, FA significantly increased in pre(p = 0.0039)and intraforaminal(p = 0.0003) segments, and MD, AD, and RD decreased in all segments (p < 0.0001). VAS (p < 0.0001) also decreased between T0 and T1. This pilot study aims to clarify the biomechanical impact of interspinous spacers through microstructural analysis of both treated and adjacent untreated nerve roots. To our knowledge, no studies have examined the short- to medium-term changes in DTI values of lumbar nerve roots before and after IPD placement, or compared changes between treated and untreated roots.</p>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":" ","pages":"110306"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.mri.2024.110306","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion tensor imaging (DTI) and its parameters such as fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD) are increasingly being used to assess peripheral nerve integrity alongside nerve conduction studies. This pilot study aims to compare DTI values of lumbar spinal nerve roots before (T0) and after (T1) treatment with an interspinous process device (IPD). Seven patients (5 females, 2 males; mean age: 68) suffering from neurogenic claudication and lumbar spinal canal and foraminal stenosis were evaluated. Visual Analog Scale (VAS) for perceived pain, Oswestry Disability Index (ODI), and DTI parameters were assessed between T0 and T1. No significant difference in FA was found in treated roots, while MD (p = 0.0015), RD (p = 0.0032), and AD (p = 0.0221) were significantly altered. At untreated levels, all DTI parameters showed highly significant differences (p < 0.0001) between T0 and T1. In treated roots, FA values significantly increased in the intraforaminal segment(p = 0.0229), while MD(p = 0.0124), AD(p = 0.0128), and RD (p = 0.0143) values decreased in the pre-foraminal segment. In untreated roots, FA significantly increased in pre(p = 0.0039)and intraforaminal(p = 0.0003) segments, and MD, AD, and RD decreased in all segments (p < 0.0001). VAS (p < 0.0001) also decreased between T0 and T1. This pilot study aims to clarify the biomechanical impact of interspinous spacers through microstructural analysis of both treated and adjacent untreated nerve roots. To our knowledge, no studies have examined the short- to medium-term changes in DTI values of lumbar nerve roots before and after IPD placement, or compared changes between treated and untreated roots.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.