Deciphering new insights into copy number variations as drivers of genomic diversity and adaptation in farm animal species.

IF 2.6 3区 生物学 Q2 GENETICS & HEREDITY
Gene Pub Date : 2024-12-11 DOI:10.1016/j.gene.2024.149159
C S Celus, Sheikh Firdous Ahmad, Munish Gangwar, Subodh Kumar, Amit Kumar
{"title":"Deciphering new insights into copy number variations as drivers of genomic diversity and adaptation in farm animal species.","authors":"C S Celus, Sheikh Firdous Ahmad, Munish Gangwar, Subodh Kumar, Amit Kumar","doi":"10.1016/j.gene.2024.149159","DOIUrl":null,"url":null,"abstract":"<p><p>The basis of all improvement in (re)production performance of animals and plants lies in the genetic variation. The underlying genetic variation can be further explored through investigations using molecular markers including single nucleotide polymorphism (SNP) and microsatellite, and more recently structural variants like copy number variations (CNVs). Unlike SNPs, CNVs affect a larger proportion of the genome, making them more impactful vis-à-vis variation at the phenotype level. They significantly contribute to genetic variation and provide raw material for natural and artificial selection for improved performance. CNVs are characterized as unbalanced structural variations that arise from four major mechanisms viz., non-homologous end joining (NHEJ), non-allelic homologous recombination (NAHR), fork stalling, and template switching (FoSTeS), and retrotransposition. Various detection methods have been developed to identify CNVs, including molecular techniques and massively parallel sequencing. Next-generation sequencing (NGS)/ high-throughput sequencing offers higher resolution and sensitivity, but challenges remain in delineating CNVs in regions with repetitive sequences or high GC content. High-throughput sequencing technologies utilize different methods based on read-pair, split-read, read depth, and assembly approaches (or their combination) to detect CNVs. Read-pair based methods work by mapping discordant reads, while the read-depth approach works on detecting the correlation between read depth and copy number of genetic segments or a gene. Split-read methods involve mapping segments of reads to different locations on the genome, while assembly methods involve comparing contigs to a reference or de novo sequencing. Similar to other marker-trait association studies, CNV-association studies are not uncommon in humans and farm animals. Soon, extensive studies will be needed to deduce the unique evolutionary trajectories and underlying molecular mechanisms for targeted genetic improvements in different farm animal species. The present review delineates the importance of CNVs in genetic studies, their generation along with programs and principles to efficiently identify them, and finally throw light on the existing literature on studies in farm animal species vis-à-vis CNVs.</p>","PeriodicalId":12499,"journal":{"name":"Gene","volume":" ","pages":"149159"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.gene.2024.149159","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

The basis of all improvement in (re)production performance of animals and plants lies in the genetic variation. The underlying genetic variation can be further explored through investigations using molecular markers including single nucleotide polymorphism (SNP) and microsatellite, and more recently structural variants like copy number variations (CNVs). Unlike SNPs, CNVs affect a larger proportion of the genome, making them more impactful vis-à-vis variation at the phenotype level. They significantly contribute to genetic variation and provide raw material for natural and artificial selection for improved performance. CNVs are characterized as unbalanced structural variations that arise from four major mechanisms viz., non-homologous end joining (NHEJ), non-allelic homologous recombination (NAHR), fork stalling, and template switching (FoSTeS), and retrotransposition. Various detection methods have been developed to identify CNVs, including molecular techniques and massively parallel sequencing. Next-generation sequencing (NGS)/ high-throughput sequencing offers higher resolution and sensitivity, but challenges remain in delineating CNVs in regions with repetitive sequences or high GC content. High-throughput sequencing technologies utilize different methods based on read-pair, split-read, read depth, and assembly approaches (or their combination) to detect CNVs. Read-pair based methods work by mapping discordant reads, while the read-depth approach works on detecting the correlation between read depth and copy number of genetic segments or a gene. Split-read methods involve mapping segments of reads to different locations on the genome, while assembly methods involve comparing contigs to a reference or de novo sequencing. Similar to other marker-trait association studies, CNV-association studies are not uncommon in humans and farm animals. Soon, extensive studies will be needed to deduce the unique evolutionary trajectories and underlying molecular mechanisms for targeted genetic improvements in different farm animal species. The present review delineates the importance of CNVs in genetic studies, their generation along with programs and principles to efficiently identify them, and finally throw light on the existing literature on studies in farm animal species vis-à-vis CNVs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Gene
Gene 生物-遗传学
CiteScore
6.10
自引率
2.90%
发文量
718
审稿时长
42 days
期刊介绍: Gene publishes papers that focus on the regulation, expression, function and evolution of genes in all biological contexts, including all prokaryotic and eukaryotic organisms, as well as viruses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信