Fengqi Duan, Huangjing Li, Bo Lu, Xiaobo Wang, Xiaojun Xu
{"title":"Loss of Trim31 Worsens Cardiac Remodeling in a Mouse Model of Heart Failure by Enhancing the Activation of the NLRP3 Inflammasome.","authors":"Fengqi Duan, Huangjing Li, Bo Lu, Xiaobo Wang, Xiaojun Xu","doi":"10.1007/s10753-024-02217-w","DOIUrl":null,"url":null,"abstract":"<p><p>Tripartite motif-containing protein 31 (Trim31) is known to be involved in various pathological conditions, including heart diseases. Nonetheless, its specific involvement in heart failure (HF) has yet to be determined. In this study, we examined the function and mechanism of Trim31 in HF by using mice with cardiac-specific knockout (cKO) of Trim31. The HF mouse model was induced via the subcutaneous injection of isoproterenol (ISO). We observed a decrease in Trim31 expression in the heart tissues of mice with HF. Compared with wild-type (WT) mice, Trim31 cKO mice presented more severe characteristics of HF, including worsened cardiac dysfunction, hypertrophy, and fibrosis. However, these symptoms in Trim31 cKO mice were significantly reversed when they received an intramyocardial injection of recombinant adeno-associated virus (AAV) expressing Trim31. Excessive activation of the NLRP3 inflammasome, manifested by increased levels of NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18, was observed in Trim31 cKO mice with HF. However, Trim31 overexpression effectively reversed the NLRP3 inflammasome activation in Trim31 cKO mice with HF. Selective inhibition of the NLRP3 inflammasome with the NLRP3 inhibitor MCC950 effectively reversed the worsened cardiac dysfunction, hypertrophy, and fibrosis observed in Trim31 cKO mice with HF. Overall, the findings from this study reveal a crucial role of Trim31 in HF. Trim31 deficiency may contribute to the progression of HF by promoting cardiac hypertrophy, fibrosis, and inflammation by facilitating the activation of the NLRP3 inflammasome. Therefore, Trim31 may hold significant potential as a therapeutic target for the treatment of HF.</p>","PeriodicalId":13524,"journal":{"name":"Inflammation","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10753-024-02217-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tripartite motif-containing protein 31 (Trim31) is known to be involved in various pathological conditions, including heart diseases. Nonetheless, its specific involvement in heart failure (HF) has yet to be determined. In this study, we examined the function and mechanism of Trim31 in HF by using mice with cardiac-specific knockout (cKO) of Trim31. The HF mouse model was induced via the subcutaneous injection of isoproterenol (ISO). We observed a decrease in Trim31 expression in the heart tissues of mice with HF. Compared with wild-type (WT) mice, Trim31 cKO mice presented more severe characteristics of HF, including worsened cardiac dysfunction, hypertrophy, and fibrosis. However, these symptoms in Trim31 cKO mice were significantly reversed when they received an intramyocardial injection of recombinant adeno-associated virus (AAV) expressing Trim31. Excessive activation of the NLRP3 inflammasome, manifested by increased levels of NLRP3, ASC, cleaved Caspase-1, cleaved GSDMD, IL-1β, and IL-18, was observed in Trim31 cKO mice with HF. However, Trim31 overexpression effectively reversed the NLRP3 inflammasome activation in Trim31 cKO mice with HF. Selective inhibition of the NLRP3 inflammasome with the NLRP3 inhibitor MCC950 effectively reversed the worsened cardiac dysfunction, hypertrophy, and fibrosis observed in Trim31 cKO mice with HF. Overall, the findings from this study reveal a crucial role of Trim31 in HF. Trim31 deficiency may contribute to the progression of HF by promoting cardiac hypertrophy, fibrosis, and inflammation by facilitating the activation of the NLRP3 inflammasome. Therefore, Trim31 may hold significant potential as a therapeutic target for the treatment of HF.
期刊介绍:
Inflammation publishes the latest international advances in experimental and clinical research on the physiology, biochemistry, cell biology, and pharmacology of inflammation. Contributions include full-length scientific reports, short definitive articles, and papers from meetings and symposia proceedings. The journal''s coverage includes acute and chronic inflammation; mediators of inflammation; mechanisms of tissue injury and cytotoxicity; pharmacology of inflammation; and clinical studies of inflammation and its modification.