Quasiperiodic shrimp-shaped domains in intrinsically coupled oscillators.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0234904
Silvio L T de Souza, Antonio M Batista, Rene O Medrano-T, Iberê L Caldas
{"title":"Quasiperiodic shrimp-shaped domains in intrinsically coupled oscillators.","authors":"Silvio L T de Souza, Antonio M Batista, Rene O Medrano-T, Iberê L Caldas","doi":"10.1063/5.0234904","DOIUrl":null,"url":null,"abstract":"<p><p>We report remarkable pattern formation of quasiperiodic domains in the two-dimensional parameter space of an intrinsically coupled system, comprising a rotor and a Duffing oscillator. In our analysis, we characterize the system using Lyapunov exponents, identifying self-similar islands composed of intricate regions of chaotic, quasiperiodic, and periodic behaviors. These islands form structures with an accumulation arrangement, denominated here as metamorphic tongues. Inside the islands, we observe Arnold tongues corresponding to periodic solutions. In addition, we surprisingly identify quasiperiodic shrimp-shaped domains that have been typically observed for periodic solutions. Similar features to the periodic case, such as period-doubling and secondary-near shrimp with three times the period, are observed in quasiperiodic shrimp as torus-doubling and torus-tripling.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0234904","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We report remarkable pattern formation of quasiperiodic domains in the two-dimensional parameter space of an intrinsically coupled system, comprising a rotor and a Duffing oscillator. In our analysis, we characterize the system using Lyapunov exponents, identifying self-similar islands composed of intricate regions of chaotic, quasiperiodic, and periodic behaviors. These islands form structures with an accumulation arrangement, denominated here as metamorphic tongues. Inside the islands, we observe Arnold tongues corresponding to periodic solutions. In addition, we surprisingly identify quasiperiodic shrimp-shaped domains that have been typically observed for periodic solutions. Similar features to the periodic case, such as period-doubling and secondary-near shrimp with three times the period, are observed in quasiperiodic shrimp as torus-doubling and torus-tripling.

内在耦合振荡器中的准周期虾形域。
我们报告了在一个由转子和达芬振荡器组成的内在耦合系统的二维参数空间中,准周期域形成的非凡模式。在分析过程中,我们使用李亚普诺夫指数来描述系统的特征,识别由混沌、准周期和周期行为的复杂区域组成的自相似岛。这些岛屿形成了具有累积排列的结构,在此称为变质舌。在这些岛屿内部,我们观察到与周期解相对应的阿诺舌。此外,我们还出人意料地发现了准周期虾形域,这通常是在周期解中观察到的。与周期性情况类似的特征,如周期加倍和周期为三倍的次近虾形,在准周期虾形中也能观察到,如环状加倍和环状三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信