Brownian non-Gaussian polymer diffusion in non-static media.

IF 2.7 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2024-12-01 DOI:10.1063/5.0232075
Xiao Zhang, Heng Wang, Weihua Deng
{"title":"Brownian non-Gaussian polymer diffusion in non-static media.","authors":"Xiao Zhang, Heng Wang, Weihua Deng","doi":"10.1063/5.0232075","DOIUrl":null,"url":null,"abstract":"<p><p>In nature, essentially, almost all the particles move irregularly in non-static media. With the advance of observation techniques, various kinds of new dynamical phenomena are detected, e.g., Brownian non-Gaussian diffusion. This paper focuses on the dynamical behavior of the center of mass (CM) of a polymer in non-static media and investigates the effect of polymer size fluctuations on the diffusion behavior. First, we establish a diffusing diffusivity model for polymer size fluctuations, linking the polymer size variation to the birth and death process, and introduce co-moving and physical coordinate systems to characterize the position of the CM for a polymer in non-static media. Next, the important statistical quantities for the CM diffusing diffusivity model in non-static media, such as mean square displacement (MSD) and kurtosis, are obtained by adopting the subordinate process approach, and the long-time asymptotic behavior of the MSD in the media of different types is specifically analyzed. Finally, the bivariate Fokker-Planck equation and the Feynman-Kac equation corresponding to the diffusing diffusivity model are detailedly derived and solved through the deep backward stochastic differential equation (BSDE) method to confirm the correctness of the derived equations.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"34 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0232075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In nature, essentially, almost all the particles move irregularly in non-static media. With the advance of observation techniques, various kinds of new dynamical phenomena are detected, e.g., Brownian non-Gaussian diffusion. This paper focuses on the dynamical behavior of the center of mass (CM) of a polymer in non-static media and investigates the effect of polymer size fluctuations on the diffusion behavior. First, we establish a diffusing diffusivity model for polymer size fluctuations, linking the polymer size variation to the birth and death process, and introduce co-moving and physical coordinate systems to characterize the position of the CM for a polymer in non-static media. Next, the important statistical quantities for the CM diffusing diffusivity model in non-static media, such as mean square displacement (MSD) and kurtosis, are obtained by adopting the subordinate process approach, and the long-time asymptotic behavior of the MSD in the media of different types is specifically analyzed. Finally, the bivariate Fokker-Planck equation and the Feynman-Kac equation corresponding to the diffusing diffusivity model are detailedly derived and solved through the deep backward stochastic differential equation (BSDE) method to confirm the correctness of the derived equations.

非静态介质中的布朗非高斯聚合物扩散。
从本质上讲,自然界中几乎所有粒子都在非静态介质中做无规则运动。随着观测技术的进步,人们发现了各种新的动力学现象,如布朗非高斯扩散。本文主要研究非静态介质中聚合物质心(CM)的动力学行为,并探讨聚合物尺寸波动对扩散行为的影响。首先,我们建立了聚合物尺寸波动的扩散漫射模型,将聚合物尺寸变化与生灭过程联系起来,并引入共动坐标系和物理坐标系来表征聚合物在非静态介质中的质心位置。接着,采用隶属过程方法得到了非静态介质中CM扩散扩散模型的重要统计量,如均方位移(MSD)和峰度,并具体分析了MSD在不同类型介质中的长期渐近行为。最后,详细推导了与扩散弥散模型相对应的双变量福克-普朗克方程和费曼-卡克方程,并通过深度后向随机微分方程(BSDE)方法求解,证实了推导方程的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信