Marija Dinevska, Lachlan Mcaloney, Samuel S Widodo, Gulay Filiz, Jeremy Anderson, Sebastian Dworkin, Simon P Windley, Dagmar Wilhelm, Theo Mantamadiotis
{"title":"Testicular sex cord-stromal tumors in mice with constitutive activation of PI3K and loss of Pten.","authors":"Marija Dinevska, Lachlan Mcaloney, Samuel S Widodo, Gulay Filiz, Jeremy Anderson, Sebastian Dworkin, Simon P Windley, Dagmar Wilhelm, Theo Mantamadiotis","doi":"10.1093/carcin/bgae077","DOIUrl":null,"url":null,"abstract":"<p><p>Testicular tumors are the most common malignancy of young men and tumors affecting the testis are caused by somatic mutations in germ or germ-like cells. The PI3K pathway is constitutively activated in about one third of testicular cancers. To investigate the role of the PI3K pathway in transforming stem-like cells in the testis, we investigated tumors derived from mice with post-natal, constitutive activation of PI3K signaling and homozygous deletion of tumor suppressor Pten, targeted to nestin expressing cells. Mice developed aggressive tumors, exhibiting heterogeneous histopathology and hemorrhaging. The tumors resemble the rare testis tumor type, testicular sex cord-stromal Leydig cell tumors. Single cell resolution spatial tissue analysis demonstrated that T-cells are the dominant tumor infiltrating immune cell type, with very few infiltrating macrophages observed in the tumor tissue, with CD8+ T-cells predominating. Further analysis showed that immune cells preferentially localize to or accumulate within stromal regions.</p>","PeriodicalId":9446,"journal":{"name":"Carcinogenesis","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/carcin/bgae077","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Testicular tumors are the most common malignancy of young men and tumors affecting the testis are caused by somatic mutations in germ or germ-like cells. The PI3K pathway is constitutively activated in about one third of testicular cancers. To investigate the role of the PI3K pathway in transforming stem-like cells in the testis, we investigated tumors derived from mice with post-natal, constitutive activation of PI3K signaling and homozygous deletion of tumor suppressor Pten, targeted to nestin expressing cells. Mice developed aggressive tumors, exhibiting heterogeneous histopathology and hemorrhaging. The tumors resemble the rare testis tumor type, testicular sex cord-stromal Leydig cell tumors. Single cell resolution spatial tissue analysis demonstrated that T-cells are the dominant tumor infiltrating immune cell type, with very few infiltrating macrophages observed in the tumor tissue, with CD8+ T-cells predominating. Further analysis showed that immune cells preferentially localize to or accumulate within stromal regions.
期刊介绍:
Carcinogenesis: Integrative Cancer Research is a multi-disciplinary journal that brings together all the varied aspects of research that will ultimately lead to the prevention of cancer in man. The journal publishes papers that warrant prompt publication in the areas of Biology, Genetics and Epigenetics (including the processes of promotion, progression, signal transduction, apoptosis, genomic instability, growth factors, cell and molecular biology, mutation, DNA repair, genetics, etc.), Cancer Biomarkers and Molecular Epidemiology (including genetic predisposition to cancer, and epidemiology), Inflammation, Microenvironment and Prevention (including molecular dosimetry, chemoprevention, nutrition and cancer, etc.), and Carcinogenesis (including oncogenes and tumor suppressor genes in carcinogenesis, therapy resistance of solid tumors, cancer mouse models, apoptosis and senescence, novel therapeutic targets and cancer drugs).