Ultrathin composite polymer electrolyte with ordered ion pathways for all-solid-state lithium-metal batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Haoran Wang, Guangzeng Cheng, Hao Sun, Jingyi Wu
{"title":"Ultrathin composite polymer electrolyte with ordered ion pathways for all-solid-state lithium-metal batteries","authors":"Haoran Wang,&nbsp;Guangzeng Cheng,&nbsp;Hao Sun,&nbsp;Jingyi Wu","doi":"10.1016/j.jcis.2024.12.052","DOIUrl":null,"url":null,"abstract":"<div><div>Thin yet robust solid-state electrolytes (SSEs) with efficient Li<sup>+</sup> transport are highly desirable for realizing high-energy-density all-solid-state lithium-metal batteries (ASSLMBs). Herein, an ultrathin (10 μm) SSE with ordered ion pathways is reported for scalable ASSLMBs production. The SSE is supported by the poly (ether sulfone) scaffold, which not only improves mechanical strength and safety capability but also enables low-tortuous Li<sup>+</sup> transport along the inner walls of its vertically aligned microchannels. The fast and direct Li<sup>+</sup> conduction facilitates uniform Li deposition and the scaffold-reinforced structure provides superior dendrite suppression capability, together enhancing interfacial stability with the Li metal anode. As a result, the composite electrolyte exhibits room temperature ionic conductivity up to 0.10 mS cm<sup>−1</sup> and Li<sup>+</sup> transference number up to 0.51. Moreover, the LiFePO<sub>4</sub>/Li ASSLMBs achieve capacity retention of 81 % after 300 cycles at 1 C/60 °C and 84 % after 100 cycles at 0.1 C/room temperature. Notably, the cell is able to operate safely and exhibit excellent electrochemical performance under high temperature of 100 °C. The versatility of the strategy is illustrated by a demonstration of the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub> system.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 ","pages":"Pages 14-24"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724029059","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thin yet robust solid-state electrolytes (SSEs) with efficient Li+ transport are highly desirable for realizing high-energy-density all-solid-state lithium-metal batteries (ASSLMBs). Herein, an ultrathin (10 μm) SSE with ordered ion pathways is reported for scalable ASSLMBs production. The SSE is supported by the poly (ether sulfone) scaffold, which not only improves mechanical strength and safety capability but also enables low-tortuous Li+ transport along the inner walls of its vertically aligned microchannels. The fast and direct Li+ conduction facilitates uniform Li deposition and the scaffold-reinforced structure provides superior dendrite suppression capability, together enhancing interfacial stability with the Li metal anode. As a result, the composite electrolyte exhibits room temperature ionic conductivity up to 0.10 mS cm−1 and Li+ transference number up to 0.51. Moreover, the LiFePO4/Li ASSLMBs achieve capacity retention of 81 % after 300 cycles at 1 C/60 °C and 84 % after 100 cycles at 0.1 C/room temperature. Notably, the cell is able to operate safely and exhibit excellent electrochemical performance under high temperature of 100 °C. The versatility of the strategy is illustrated by a demonstration of the LiNi0.8Co0.1Mn0.1O2 system.

Abstract Image

全固态锂金属电池用有序离子通路超薄复合聚合物电解质。
具有高效Li+传输的薄而坚固的固态电解质(sse)是实现高能量密度全固态锂金属电池(asslmb)的理想材料。本文报道了一种具有有序离子通路的超薄(10 μm) SSE,用于可扩展的asslmb生产。SSE由聚醚砜支架支撑,不仅提高了机械强度和安全性能,而且可以使Li+沿其垂直排列的微通道内壁低弯曲输送。快速直接的Li+传导促进了均匀的Li沉积,支架增强结构提供了优越的枝晶抑制能力,同时增强了与Li金属阳极的界面稳定性。结果表明,复合电解质的室温离子电导率可达0.10 mS cm-1, Li+转移数可达0.51。此外,LiFePO4/Li asslmb在1℃/60℃下循环300次后的容量保持率为81%,在0.1℃/室温下循环100次后的容量保持率为84%。值得注意的是,该电池能够在100°C的高温下安全运行并表现出优异的电化学性能。LiNi0.8Co0.1Mn0.1O2系统的演示说明了该策略的多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信