{"title":"Double catalysis of Co<sub>9</sub>Se<sub>8</sub>-Ni<sub>3</sub>Se<sub>4</sub> heterogeneous dual-chamber core-shell Achieves high conversion of polysulfides.","authors":"Chunman Yang, Fei Wang, Yongqi Wang, Wenchang Han, Wengxiang Ai, Qian Wang, Yuhan He, Ziyi Zhu, Yiyong Zhang, Xue Li","doi":"10.1016/j.jcis.2024.12.010","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving efficient catalytic conversion of lithium polysulfides is a key way to improve kinetics in lithium-sulfur (Li-S) batteries. However, due to the limited nature of the catalyst interface, it is difficult to achieve a high conversion rate of LiPSs in one step. A novel heterogeneous dual-chamber core-shell nanocatalyst (Co<sub>9</sub>Se<sub>8</sub>-Ni<sub>3</sub>Se<sub>4</sub>@PC) is described here, which efficiently accommodates sulfur and provides a heterogeneous dual catalytic interface like a two-stage \"filter\". The dual guarantee provides a rapid and high-ratio catalytic conversion of LiPSs. Through in-situ Raman experiments and theoretical analysis, it has been proved that the dual-chamber multi-stage catalytic structure can promote the efficient conversion of LiPSs and good sulfur species reversibility. The Co<sub>9</sub>Se<sub>8</sub>-Ni<sub>3</sub>Se<sub>4</sub>@PC cathode provides an initial specific capacity of 923mAh/g at 2C, and the average capacity decay rate after 800 cycles is only 0.048 %. This work provides new ideas for designing new nanocatalysts in lithium-sulfur systems and insights into achieving multi-stage catalysis in structural design.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"1164-1174"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.010","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Achieving efficient catalytic conversion of lithium polysulfides is a key way to improve kinetics in lithium-sulfur (Li-S) batteries. However, due to the limited nature of the catalyst interface, it is difficult to achieve a high conversion rate of LiPSs in one step. A novel heterogeneous dual-chamber core-shell nanocatalyst (Co9Se8-Ni3Se4@PC) is described here, which efficiently accommodates sulfur and provides a heterogeneous dual catalytic interface like a two-stage "filter". The dual guarantee provides a rapid and high-ratio catalytic conversion of LiPSs. Through in-situ Raman experiments and theoretical analysis, it has been proved that the dual-chamber multi-stage catalytic structure can promote the efficient conversion of LiPSs and good sulfur species reversibility. The Co9Se8-Ni3Se4@PC cathode provides an initial specific capacity of 923mAh/g at 2C, and the average capacity decay rate after 800 cycles is only 0.048 %. This work provides new ideas for designing new nanocatalysts in lithium-sulfur systems and insights into achieving multi-stage catalysis in structural design.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies