Crystalline-amorphous hybrid CoNi layered double hydroxides for high areal energy density supercapacitor

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Wenhao Tao , Hongying Quan , Zhengkun Tu , Zhixia Zhang , Dezhi Chen
{"title":"Crystalline-amorphous hybrid CoNi layered double hydroxides for high areal energy density supercapacitor","authors":"Wenhao Tao ,&nbsp;Hongying Quan ,&nbsp;Zhengkun Tu ,&nbsp;Zhixia Zhang ,&nbsp;Dezhi Chen","doi":"10.1016/j.jcis.2024.12.061","DOIUrl":null,"url":null,"abstract":"<div><div>Crystalline-amorphous hybrid materials have garnered significant attention in the realm of energy storage, yet simultaneously regulating the morphological and electronic structure of crystalline-amorphous hybrid remains a challenge. Herein, crystalline-amorphous hybrid CoNi-layered double hydroxides (CA-CoNi-LDHs) were constructed by a facile chronoamperometry (<em>i-t</em>) electrochemical activation strategy, which allows for dual modulation of both structural transformations and electronic structure of CoNi-layered double hydroxides (CoNi-LDHs). Experimental results demonstrate that the construction of a crystalline-amorphous hybrid can effectively optimize both the morphological and electronic structure of CoNi-LDHs, expose abundant defects, and raise the concentration of active Ni<sup>2+</sup> and Co<sup>3+</sup> species, which are conducive to increasing the active sites for energy storage. The reduced adsorption energy for OH<sup>−</sup>, the increased electron density near the Fermi energy level, coupled with the narrowed bandgap energy of CA-CoNi-LDHs are favorable for accelerating electron transfer and enhancing reaction kinetic. Consequently, the CA-CoNi-LDHs@CC electrode with high mass loading (18.8 mg cm<sup>−2</sup>) delivers an impressive areal capacitance of 13,070 mF cm<sup>−2</sup> at 5 mA cm<sup>−2</sup>, along with exceptional cycling stability. Moreover, the assembled asymmetric supercapacitor based on CA-CoNi-LDHs@CC possesses a high areal energy density of 0.71 mWh cm<sup>−2</sup> at a power density of 3.95 mW cm<sup>−2</sup>. This work proves that construction of crystalline-amorphous hybrid materials is a viable strategy for achieving high energy density storage.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 ","pages":"Pages 1-13"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724029138","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Crystalline-amorphous hybrid materials have garnered significant attention in the realm of energy storage, yet simultaneously regulating the morphological and electronic structure of crystalline-amorphous hybrid remains a challenge. Herein, crystalline-amorphous hybrid CoNi-layered double hydroxides (CA-CoNi-LDHs) were constructed by a facile chronoamperometry (i-t) electrochemical activation strategy, which allows for dual modulation of both structural transformations and electronic structure of CoNi-layered double hydroxides (CoNi-LDHs). Experimental results demonstrate that the construction of a crystalline-amorphous hybrid can effectively optimize both the morphological and electronic structure of CoNi-LDHs, expose abundant defects, and raise the concentration of active Ni2+ and Co3+ species, which are conducive to increasing the active sites for energy storage. The reduced adsorption energy for OH, the increased electron density near the Fermi energy level, coupled with the narrowed bandgap energy of CA-CoNi-LDHs are favorable for accelerating electron transfer and enhancing reaction kinetic. Consequently, the CA-CoNi-LDHs@CC electrode with high mass loading (18.8 mg cm−2) delivers an impressive areal capacitance of 13,070 mF cm−2 at 5 mA cm−2, along with exceptional cycling stability. Moreover, the assembled asymmetric supercapacitor based on CA-CoNi-LDHs@CC possesses a high areal energy density of 0.71 mWh cm−2 at a power density of 3.95 mW cm−2. This work proves that construction of crystalline-amorphous hybrid materials is a viable strategy for achieving high energy density storage.

Abstract Image

高面能密度超级电容器用晶态-非晶态杂化CoNi层状双氢氧化物。
晶体-非晶杂化材料在储能领域受到了广泛的关注,但同时调控晶体-非晶杂化材料的形态和电子结构仍然是一个挑战。本文采用一种简便的时间电流法(i-t)电化学激活策略构建了结晶-非晶杂化coni层状双氢氧化物(CA-CoNi-LDHs),该策略允许对coni层状双氢氧化物(CoNi-LDHs)的结构转变和电子结构进行双重调制。实验结果表明,晶非晶杂化结构的构建可以有效优化CoNi-LDHs的形态和电子结构,暴露出丰富的缺陷,提高活性Ni2+和Co3+的浓度,有利于增加储能活性位点。OH-吸附能的降低、费米能级附近电子密度的增加以及CA-CoNi-LDHs带隙能的缩小有利于加速电子转移和增强反应动力学。因此,具有高质量负载(18.8 mg cm-2)的CA-CoNi-LDHs@CC电极在5 mA cm-2时提供令人印象深刻的13,070 mF cm-2面电容,以及出色的循环稳定性。此外,基于CA-CoNi-LDHs@CC组装的不对称超级电容器在3.95 mW cm-2的功率密度下具有0.71 mWh cm-2的高面能密度。这项工作证明了构建晶体-非晶杂化材料是实现高能量密度存储的可行策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信