Wenhao Tao, Hongying Quan, Zhengkun Tu, Zhixia Zhang, Dezhi Chen
{"title":"Crystalline-amorphous hybrid CoNi layered double hydroxides for high areal energy density supercapacitor.","authors":"Wenhao Tao, Hongying Quan, Zhengkun Tu, Zhixia Zhang, Dezhi Chen","doi":"10.1016/j.jcis.2024.12.061","DOIUrl":null,"url":null,"abstract":"<p><p>Crystalline-amorphous hybrid materials have garnered significant attention in the realm of energy storage, yet simultaneously regulating the morphological and electronic structure of crystalline-amorphous hybrid remains a challenge. Herein, crystalline-amorphous hybrid CoNi-layered double hydroxides (CA-CoNi-LDHs) were constructed by a facile chronoamperometry (i-t) electrochemical activation strategy, which allows for dual modulation of both structural transformations and electronic structure of CoNi-layered double hydroxides (CoNi-LDHs). Experimental results demonstrate that the construction of a crystalline-amorphous hybrid can effectively optimize both the morphological and electronic structure of CoNi-LDHs, expose abundant defects, and raise the concentration of active Ni<sup>2+</sup> and Co<sup>3+</sup> species, which are conducive to increasing the active sites for energy storage. The reduced adsorption energy for OH<sup>-</sup>, the increased electron density near the Fermi energy level, coupled with the narrowed bandgap energy of CA-CoNi-LDHs are favorable for accelerating electron transfer and enhancing reaction kinetic. Consequently, the CA-CoNi-LDHs@CC electrode with high mass loading (18.8 mg cm<sup>-2</sup>) delivers an impressive areal capacitance of 13,070 mF cm<sup>-2</sup> at 5 mA cm<sup>-2</sup>, along with exceptional cycling stability. Moreover, the assembled asymmetric supercapacitor based on CA-CoNi-LDHs@CC possesses a high areal energy density of 0.71 mWh cm<sup>-2</sup> at a power density of 3.95 mW cm<sup>-2</sup>. This work proves that construction of crystalline-amorphous hybrid materials is a viable strategy for achieving high energy density storage.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"1-13"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.061","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Crystalline-amorphous hybrid materials have garnered significant attention in the realm of energy storage, yet simultaneously regulating the morphological and electronic structure of crystalline-amorphous hybrid remains a challenge. Herein, crystalline-amorphous hybrid CoNi-layered double hydroxides (CA-CoNi-LDHs) were constructed by a facile chronoamperometry (i-t) electrochemical activation strategy, which allows for dual modulation of both structural transformations and electronic structure of CoNi-layered double hydroxides (CoNi-LDHs). Experimental results demonstrate that the construction of a crystalline-amorphous hybrid can effectively optimize both the morphological and electronic structure of CoNi-LDHs, expose abundant defects, and raise the concentration of active Ni2+ and Co3+ species, which are conducive to increasing the active sites for energy storage. The reduced adsorption energy for OH-, the increased electron density near the Fermi energy level, coupled with the narrowed bandgap energy of CA-CoNi-LDHs are favorable for accelerating electron transfer and enhancing reaction kinetic. Consequently, the CA-CoNi-LDHs@CC electrode with high mass loading (18.8 mg cm-2) delivers an impressive areal capacitance of 13,070 mF cm-2 at 5 mA cm-2, along with exceptional cycling stability. Moreover, the assembled asymmetric supercapacitor based on CA-CoNi-LDHs@CC possesses a high areal energy density of 0.71 mWh cm-2 at a power density of 3.95 mW cm-2. This work proves that construction of crystalline-amorphous hybrid materials is a viable strategy for achieving high energy density storage.
期刊介绍:
The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality.
Emphasis:
The journal emphasizes fundamental scientific innovation within the following categories:
A.Colloidal Materials and Nanomaterials
B.Soft Colloidal and Self-Assembly Systems
C.Adsorption, Catalysis, and Electrochemistry
D.Interfacial Processes, Capillarity, and Wetting
E.Biomaterials and Nanomedicine
F.Energy Conversion and Storage, and Environmental Technologies