Cooperation of covalent bonds and coordinative bonds stabilizing the Si-binder-Cu interfaces for extending lifespan of silicon anodes.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Xiaorui Wang, Hao Li, Wenhui Fu, Qiushi Chen, Xuzhong Gong, Zhi Wang, Junhao Liu
{"title":"Cooperation of covalent bonds and coordinative bonds stabilizing the Si-binder-Cu interfaces for extending lifespan of silicon anodes.","authors":"Xiaorui Wang, Hao Li, Wenhui Fu, Qiushi Chen, Xuzhong Gong, Zhi Wang, Junhao Liu","doi":"10.1016/j.jcis.2024.12.041","DOIUrl":null,"url":null,"abstract":"<p><p>Binders provide a straightforward and efficient strategy to mitigate the significant challenge of volume expansion in silicon anodes for lithium-ion batteries. To improve the cycle life of silicon anodes, a cross-linked binder carboxymethyl cellulose-phytic acid-pyrrole (CMC-DP) is designed and synthesized using carboxymethyl cellulose, phytic acid, and pyrrole. The numerous hydroxyl groups in phytic acid provide abundant binding sites for the formation of hydrogen and ester bonds. The formation of hydrogen bonds and covalent bonds enhances the mechanical properties of the adhesive. The amino groups in the binder form NSiO covalent bonds with silicon particles, while the hydroxyl and carboxyl groups form (COO)<sub>2</sub>Cu and (OH)<sub>2</sub>Cu coordination bonds with the copper foil, enhancing interfacial adhesion. When the CMC-DP10 (10 µL pyrrole) binder is applied to silicon nanoparticles (∼30 nm), the specific capacity of the electrode can be maintained at around 1700 mAh/g after 500, whereas the CMC binder achieves only ∼100 mAh/g under the same conditions. This work demonstrates that the CMC-DP binder exhibits strong adhesion to both silicon nanoparticles and copper foil.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"36-45"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Binders provide a straightforward and efficient strategy to mitigate the significant challenge of volume expansion in silicon anodes for lithium-ion batteries. To improve the cycle life of silicon anodes, a cross-linked binder carboxymethyl cellulose-phytic acid-pyrrole (CMC-DP) is designed and synthesized using carboxymethyl cellulose, phytic acid, and pyrrole. The numerous hydroxyl groups in phytic acid provide abundant binding sites for the formation of hydrogen and ester bonds. The formation of hydrogen bonds and covalent bonds enhances the mechanical properties of the adhesive. The amino groups in the binder form NSiO covalent bonds with silicon particles, while the hydroxyl and carboxyl groups form (COO)2Cu and (OH)2Cu coordination bonds with the copper foil, enhancing interfacial adhesion. When the CMC-DP10 (10 µL pyrrole) binder is applied to silicon nanoparticles (∼30 nm), the specific capacity of the electrode can be maintained at around 1700 mAh/g after 500, whereas the CMC binder achieves only ∼100 mAh/g under the same conditions. This work demonstrates that the CMC-DP binder exhibits strong adhesion to both silicon nanoparticles and copper foil.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信