Exploring covalent organic frameworks as high-capacity and long-cycling anode materials for lithium-ion batteries.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Qidi Huang, Jianai Chen, Yuchen Chang, Lei Yang, Hongliang Shi, Xiongchao Shao, Qida Wu, Yujie Dong, Weijun Li, Cheng Zhang
{"title":"Exploring covalent organic frameworks as high-capacity and long-cycling anode materials for lithium-ion batteries.","authors":"Qidi Huang, Jianai Chen, Yuchen Chang, Lei Yang, Hongliang Shi, Xiongchao Shao, Qida Wu, Yujie Dong, Weijun Li, Cheng Zhang","doi":"10.1016/j.jcis.2024.12.021","DOIUrl":null,"url":null,"abstract":"<p><p>It is essential to advance the development of lithium-ion batteries (LIBs) characterized by high specific capacity and extended cycle life. Covalent organic frameworks (COFs) have emerged as pivotal materials in achieving this objective due to their long-range ordered porous structures and ease of modification. In this work, we designed and synthesized two types of β-ketoenamine-linked COFs, namely TP-3J-COF and TP-3Q-COF, which incorporate multiple redox sites. These COFs were subsequently applied to the anode of LIBs, resulting in the successful fabrication of batteries that demonstrate both high specific capacity and prolonged cycle life. Furthermore, we prepared two composites by in situ growth of COFs on carbon nanotubes (CNTs). The synergistic interaction between the COFs and CNTs enabled the TP-3J-COF@CNT and TP-3Q-COF@CNT composites to achieve maximum specific capacities of 1020 mAh g<sup>-1</sup> and 731 mAh g<sup>-1</sup>, respectively, along with cycle lives exceeding 1400 and 3000 cycles. This research underscores the efficacy of the strategy involving the construction of COFs with multiple redox-active units and their composite formation with CNTs as a robust approach for the development of high-performance LIBs.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"683 Pt 1","pages":"25-35"},"PeriodicalIF":9.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.12.021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

It is essential to advance the development of lithium-ion batteries (LIBs) characterized by high specific capacity and extended cycle life. Covalent organic frameworks (COFs) have emerged as pivotal materials in achieving this objective due to their long-range ordered porous structures and ease of modification. In this work, we designed and synthesized two types of β-ketoenamine-linked COFs, namely TP-3J-COF and TP-3Q-COF, which incorporate multiple redox sites. These COFs were subsequently applied to the anode of LIBs, resulting in the successful fabrication of batteries that demonstrate both high specific capacity and prolonged cycle life. Furthermore, we prepared two composites by in situ growth of COFs on carbon nanotubes (CNTs). The synergistic interaction between the COFs and CNTs enabled the TP-3J-COF@CNT and TP-3Q-COF@CNT composites to achieve maximum specific capacities of 1020 mAh g-1 and 731 mAh g-1, respectively, along with cycle lives exceeding 1400 and 3000 cycles. This research underscores the efficacy of the strategy involving the construction of COFs with multiple redox-active units and their composite formation with CNTs as a robust approach for the development of high-performance LIBs.

探索共价有机框架作为锂离子电池的高容量和长循环负极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信